Multiple solutions for the fractional Schrodinger-Poisson system with concave-convex nonlinearities

被引:0
作者
Cui, Na [1 ,2 ]
Sun, Hong-Rui [2 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
关键词
Fractional Schrodinger-Poisson system; concave-convex nonlinearities; multiple solutions; POSITIVE SOLUTIONS; GROUND-STATE; EQUATION; EXISTENCE;
D O I
10.1080/17476933.2022.2061476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following fractional Schrodinger-Poisson system {(-Delta)(s)u + V(x)u + phi u = f(x, u) + lambda g(x, u) in R-3, (-Delta)(alpha)phi = u(2) in R-3, where lambda is a parameter, s, alpha is an element of (0,1) and 2s + 2 alpha > 3. Under some suitable assumptions on V, f and g, we obtained the multiplicity of solutions for the above system, by applying variational methods and Ekeland's variational principle. Some recent results from the literature are improved and extended.
引用
收藏
页码:1550 / 1565
页数:16
相关论文
共 35 条
[1]   Multiplicity and concentration results for a class of critical fractional Schrodinger Poisson systems via penalization method [J].
Ambrosio, Vincenzo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (01)
[2]  
[Anonymous], 1996, Minimax theorems, DOI DOI 10.1007/978-1-4612-4146-1
[3]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[4]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[5]   Infinitely many large energy solutions for the Schrodinger-Poisson system with concave and convex nonlinearities? [J].
Chen, Shang-Jie ;
Li, Lin .
APPLIED MATHEMATICS LETTERS, 2021, 112
[6]   Localized nodal solutions of higher topological type for nonlinear Schrodinger-Poisson system [J].
Chen, Zhi ;
Qin, Dongdong ;
Zhang, Wen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
[7]   Existence and multiplicity results for the fractional Schrodinger equations with indefinite potentials [J].
Cui, Na ;
Sun, Hong-Rui .
APPLICABLE ANALYSIS, 2021, 100 (06) :1198-1212
[8]   Infinitely many positive solutions for a Schrodinger-Poisson system [J].
d'Avenia, Pietro ;
Pomponio, Alessio ;
Vaira, Giusi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5705-5721
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262