ABELIAN CYCLES IN THE HOMOLOGY OF THE TORELLI GROUP
被引:1
|
作者:
Lindell, Erik
论文数: 0引用数: 0
h-index: 0
机构:
Stockholm Univ, Roslagsvagen 101,Kraftriket 5-6, S-10691 Stockholm, SwedenStockholm Univ, Roslagsvagen 101,Kraftriket 5-6, S-10691 Stockholm, Sweden
Lindell, Erik
[1
]
机构:
[1] Stockholm Univ, Roslagsvagen 101,Kraftriket 5-6, S-10691 Stockholm, Sweden
Torelli group;
Johnson homomorphism;
JOHNSON HOMOMORPHISM;
D O I:
10.1017/S1474748021000505
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In the early 1980s, Johnson defined a homomorphism I-g(1) -> Lambda(3) H-1 (S-g,Z), where I-g(1) is the Torelli group of a closed, connected, and oriented surface of genus g with a boundary component and S-g is the corresponding surface without a boundary component. This is known as the Johnson homomorphism. We study the map induced by the Johnson homomorphism on rational homology groups and apply it to abelian cycles determined by disjoint bounding-pair maps, in order to compute a large quotient of H-n (I-g(1),Q) in the stable range. This also implies an analogous result for the stable rational homology of the Torelli group I-g,(1) of a surface with a marked point instead of a boundary component. Further, we investigate how much of the image of this map is generated by images of such cycles and use this to prove that in the pointed case, they generate a proper subrepresentation of H-n (I-g,(1)) for n >= 2 and g large enough.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Morita, Shigeyuki
Sakasai, Takuya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Sakasai, Takuya
Suzuki, Masaaki
论文数: 0引用数: 0
h-index: 0
机构:
Meiji Univ, Dept Frontier Media Sci, Nakano Ku, 4-21-1 Nakano, Tokyo 1648525, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan