scNovel: a scalable deep learning-based network for novel rare cell discovery in single-cell transcriptomics

被引:1
作者
Zheng, Chuanyang
Wang, Yixuan
Cheng, Yuqi
Wang, Xuesong
Wei, Hongxin
King, Irwin
Li, Yu
机构
关键词
novel rare cell discovery; single-cell analysis; neural network; REVEALS;
D O I
10.1093/bib/bbae112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing has achieved massive success in biological research fields. Discovering novel cell types from single-cell transcriptomics has been demonstrated to be essential in the field of biomedicine, yet is time-consuming and needs prior knowledge. With the unprecedented boom in cell atlases, auto-annotation tools have become more prevalent due to their speed, accuracy and user-friendly features. However, existing tools have mostly focused on general cell-type annotation and have not adequately addressed the challenge of discovering novel rare cell types. In this work, we introduce scNovel, a powerful deep learning-based neural network that specifically focuses on novel rare cell discovery. By testing our model on diverse datasets with different scales, protocols and degrees of imbalance, we demonstrate that scNovel significantly outperforms previous state-of-the-art novel cell detection models, reaching the most AUROC performance(the only one method whose averaged AUROC results are above 94%, up to 16.26% more comparing to the second-best method). We validate scNovel's performance on a million-scale dataset to illustrate the scalability of scNovel further. Applying scNovel on a clinical COVID-19 dataset, three potential novel subtypes of Macrophages are identified, where the COVID-related differential genes are also detected to have consistent expression patterns through deeper analysis. We believe that our proposed pipeline will be an important tool for high-throughput clinical data in a wide range of applications.
引用
收藏
页数:15
相关论文
共 53 条
[1]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Cell specific peripheral immune responses predict survival in critical COVID-19 patients [J].
Amrute, Junedh M. ;
Perry, Alexandra M. ;
Anand, Gautam ;
Cruchaga, Carlos ;
Hock, Karl G. ;
Farnsworth, Christopher W. ;
Randolph, Gwendalyn J. ;
Lavine, Kory J. ;
Steed, Ashley L. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[3]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[4]   Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2 [J].
Baggen, Jim ;
Persoons, Leentje ;
Vanstreels, Els ;
Jansen, Sander ;
Van Looveren, Dominique ;
Boeckx, Bram ;
Geudens, Vincent ;
De Man, Julie ;
Jochmans, Dirk ;
Wauters, Joost ;
Wauters, Els ;
Vanaudenaerde, Bart M. ;
Lambrechts, Diether ;
Neyts, Johan ;
Dallmeier, Kai ;
Thibaut, Hendrik Jan ;
Jacquemyn, Maarten ;
Maes, Piet ;
Daelemans, Dirk .
NATURE GENETICS, 2021, 53 (04) :435-+
[5]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   A molecular census of arcuate hypothalamus and median eminence cell types [J].
Campbell, John N. ;
Macosko, Evan Z. ;
Fenselau, Henning ;
Pers, Tune H. ;
Lyubetskaya, Anna ;
Tenen, Danielle ;
Goldman, Melissa ;
Verstegen, Anne M. J. ;
Resch, Jon M. ;
McCarroll, Steven A. ;
Rosen, Evan D. ;
Lowell, Bradford B. ;
Tsai, Linus T. .
NATURE NEUROSCIENCE, 2017, 20 (03) :484-496
[8]   Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis [J].
Chen, Yanshuo ;
Wang, Yixuan ;
Chen, Yuelong ;
Cheng, Yuqi ;
Wei, Yumeng ;
Li, Yunxiang ;
Wang, Jiuming ;
Wei, Yingying ;
Chan, Ting-Fung ;
Li, Yu .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data [J].
Cheng, Yuqi ;
Fan, Xingyu ;
Zhang, Jianing ;
Li, Yu .
COMMUNICATIONS BIOLOGY, 2023, 6 (01)
[10]   A survey of human brain transcriptome diversity at the single cell level [J].
Darmanis, Spyros ;
Sloan, Steven A. ;
Zhang, Ye ;
Enge, Martin ;
Caneda, Christine ;
Shuer, Lawrence M. ;
Gephart, Melanie G. Hayden ;
Barres, Ben A. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) :7285-7290