The dynamical tides of spinning Newtonian stars

被引:6
作者
Pnigouras, P. [1 ,2 ,3 ,4 ]
Gittins, F. [5 ]
Nanda, A. [6 ,7 ]
Andersson, N. [5 ]
Jones, D., I [5 ]
机构
[1] Univ Alicante, Dept Fis Aplicada, Campus San Vicente Del Raspeig, E-03690 Alicante, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Sez INFN Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[4] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
[5] Univ Southampton, Math Sci & STAG Res Ctr, Southampton SO17 1BJ, England
[6] Indian Inst Sci Educ & Res, Dr Homi Bhabha Rd, Pune 4110008, India
[7] Univ Tokyo, Res Ctr Early Universe RESCEU, Tokyo 1130033, Japan
关键词
asteroseismology; dense matter; equation of state; gravitation; gravitational waves; hydrodynamics; EQUATION-OF-STATE; ROTATING NEUTRON-STARS; RESONANT TIDAL EXCITATION; GRAVITATIONAL-WAVES; PARAMETER-ESTIMATION; OSCILLATION MODES; BODY; CONSTRAINTS; MASS; DEFORMABILITY;
D O I
10.1093/mnras/stad3593
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully develop the framework required to model the dynamical tidal response of a spinning neutron star in an inspiralling binary system, in the context of Newtonian gravity, making sure to include all relevant details and connections to the existing literature. The tidal perturbation is decomposed in terms of the normal oscillation modes, used to derive an expression for the effective Love number which is valid for any rotation rate. In contrast to previous work on the problem, our analysis highlights subtle issues relating to the orthogonality condition required for the mode-sum representation of the dynamical tide and shows how the prograde and retrograde modes combine to provide the overall tidal response. Utilizing a slow-rotation expansion, we show that the dynamical tide (the effective Love number) is corrected at first order in rotation, whereas in the case of the static tide (the static Love number) the rotational corrections do not enter until second order.
引用
收藏
页码:8409 / 8428
页数:20
相关论文
共 50 条
  • [41] On equilibrium tides in fully convective planets and stars
    Ivanov, PB
    Papaloizou, JCB
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 353 (04) : 1161 - 1175
  • [42] Dynamical boson stars
    Liebling, Steven L.
    Palenzuela, Carlos
    LIVING REVIEWS IN RELATIVITY, 2017, 20
  • [43] Effects of non-Newtonian gravity on the properties of strange stars
    Zhen-Yan Lu
    Guang-Xiong Peng
    Kai Zhou
    ResearchinAstronomyandAstrophysics, 2017, 17 (02) : 3 - 8
  • [44] Dynamical friction in modified Newtonian dynamics
    Nipoti, Carlo
    Ciotti, Luca
    Binney, James
    Londrillo, Pasquale
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (04) : 2194 - 2198
  • [45] Modified TOV in gravity's rainbow: properties of neutron stars and dynamical stability conditions
    Hendi, S. H.
    Bordbar, G. H.
    Panah, B. Eslam
    Panahiyan, S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (09):
  • [46] Asteroseismology of Close Binary Stars: Tides and Mass Transfer
    Guo, Zhao
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
  • [47] Properties of rapidly rotating hybrid stars with non-Newtonian gravity
    Fu Hong-Yang
    Wen De-Hua
    Yan Jing
    ACTA PHYSICA SINICA, 2012, 61 (20)
  • [48] Pseudo-Newtonian models for the equilibrium structures of rotating relativistic stars
    Kim, Jinho
    Kim, Hee Il
    Lee, Hyung Mok
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 399 (01) : 229 - 238
  • [49] Dynamical stability of quasitoroidal differentially rotating neutron stars
    Espino, Pedro L.
    Paschalidis, Vasileios
    Baumgarte, Thomas W.
    Shapiro, Stuart L.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [50] Unexpected dynamical instabilities in differentially rotating neutron stars
    Ou, Shangli
    Tohline, Joel E.
    ASTROPHYSICAL JOURNAL, 2006, 651 (02) : 1068 - 1078