The dynamical tides of spinning Newtonian stars

被引:6
作者
Pnigouras, P. [1 ,2 ,3 ,4 ]
Gittins, F. [5 ]
Nanda, A. [6 ,7 ]
Andersson, N. [5 ]
Jones, D., I [5 ]
机构
[1] Univ Alicante, Dept Fis Aplicada, Campus San Vicente Del Raspeig, E-03690 Alicante, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Sez INFN Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[4] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
[5] Univ Southampton, Math Sci & STAG Res Ctr, Southampton SO17 1BJ, England
[6] Indian Inst Sci Educ & Res, Dr Homi Bhabha Rd, Pune 4110008, India
[7] Univ Tokyo, Res Ctr Early Universe RESCEU, Tokyo 1130033, Japan
关键词
asteroseismology; dense matter; equation of state; gravitation; gravitational waves; hydrodynamics; EQUATION-OF-STATE; ROTATING NEUTRON-STARS; RESONANT TIDAL EXCITATION; GRAVITATIONAL-WAVES; PARAMETER-ESTIMATION; OSCILLATION MODES; BODY; CONSTRAINTS; MASS; DEFORMABILITY;
D O I
10.1093/mnras/stad3593
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully develop the framework required to model the dynamical tidal response of a spinning neutron star in an inspiralling binary system, in the context of Newtonian gravity, making sure to include all relevant details and connections to the existing literature. The tidal perturbation is decomposed in terms of the normal oscillation modes, used to derive an expression for the effective Love number which is valid for any rotation rate. In contrast to previous work on the problem, our analysis highlights subtle issues relating to the orthogonality condition required for the mode-sum representation of the dynamical tide and shows how the prograde and retrograde modes combine to provide the overall tidal response. Utilizing a slow-rotation expansion, we show that the dynamical tide (the effective Love number) is corrected at first order in rotation, whereas in the case of the static tide (the static Love number) the rotational corrections do not enter until second order.
引用
收藏
页码:8409 / 8428
页数:20
相关论文
共 50 条
  • [21] Properties of hypermassive neutron stars formed in mergers of spinning binaries
    Kastaun, Wolfgang
    Galeazzi, Filippo
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [22] f-mode oscillations of compact stars with realistic equations of state in dynamical spacetime
    Shashank, Swarnim
    Nouri, Fatemeh Hossein
    Gupta, Anshu
    NEW ASTRONOMY, 2023, 104
  • [23] I-Love-Q relations for neutron stars in dynamical Chern Simons gravity
    Gupta, Toral
    Majumder, Barun
    Yagi, Kent
    Yunes, Nicolas
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (02)
  • [24] Circularization of tidally disrupted stars around spinning supermassive black holes
    Hayasaki, Kimitake
    Stone, Nicholas
    Loeb, Abraham
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3760 - 3780
  • [25] Applying the starquake model to study the formation of elastic mountains on spinning neutron stars
    Gangwar, Yashaswi
    Jones, David Ian
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (02) : 2763 - 2777
  • [26] Gravitational waves from dynamical shape transition of protoneutron stars
    Rodrigues, H.
    Rosero-Gil, J. A.
    Endler, A. M.
    Duarte, S. B.
    Chiapparini, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2021, 30 (13):
  • [27] PULSE PROFILES FROM SPINNING NEUTRON STARS IN THE HARTLE-THORNE APPROXIMATION
    Psaltis, Dimitrios
    Oezel, Feryal
    ASTROPHYSICAL JOURNAL, 2014, 792 (02)
  • [28] Post-Newtonian waveforms from spinning scattering amplitudes
    Bautista, Yilber Fabian
    Siemonsen, Nils
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [29] Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model
    A. F. Lanza
    S. Mathis
    Celestial Mechanics and Dynamical Astronomy, 2016, 126 : 249 - 274
  • [30] Non-linear dynamical tides in white dwarf binaries
    Yu, Hang
    Weinberg, Nevin N.
    Fuller, Jim
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (04) : 5482 - 5502