Enhancing CO2/N2 and CH4/N2 separation performance by salt-modified aluminum-based metal-organic frameworks

被引:0
|
作者
Zhang, Peng [1 ]
Ma, Sai [1 ]
Zhang, Yujuan [1 ]
He, Chaohui [1 ]
Hu, Tuoping [1 ]
机构
[1] North Univ China, Coll Chem & Chem Engn, Dept Chem, Taiyuan 030051, Shanxi, Peoples R China
关键词
CARBON-DIOXIDE; EFFICIENT SEPARATION; CO2; CAPTURE; TRANSITION; ADSORPTION;
D O I
10.1039/d3dt03993e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The energy-saving separation of CO2/N-2 and CH4/N-2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)(2), Zn(BF4)(2) and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)(2-)), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)(2), MOF-253@Zn(BF4)(2) and MOF-253@ZnSiF6) for CO2 and CH(4 )were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol(-1)) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N-2 (1/4) and CH4/N-2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.
引用
收藏
页码:2957 / 2963
页数:7
相关论文
共 50 条
  • [21] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    A. A. Sizova
    S. A. Grintsevich
    M. A. Kochurin
    V. V. Sizov
    E. N. Brodskaya
    Colloid Journal, 2021, 83 : 372 - 378
  • [22] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    Sizova, A. A.
    Grintsevich, S. A.
    Kochurin, M. A.
    Sizov, V. V.
    Brodskaya, E. N.
    COLLOID JOURNAL, 2021, 83 (03) : 372 - 378
  • [23] Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework
    Mishra, Prashant
    Mekala, Samuel
    Dreisbach, Freider
    Mandal, Bishnupada
    Gumma, Sasidhar
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 94 : 124 - 130
  • [24] High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture
    Qiao, Zhiwei
    Peng, Chunwang
    Zhou, Jian
    Jiang, Jianwen
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (41) : 15904 - 15912
  • [25] Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal-organic framework
    Kong, Lidan
    Zou, Ruyi
    Bi, Wenzhu
    Zhong, Ruiqin
    Mu, Weijun
    Liu, Jia
    Han, Ray P. S.
    Zou, Ruqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) : 17771 - 17778
  • [26] Defect engineering improves CO2/N2 and CH4/N2 separation performance of MOF-801
    Li, Chen-Ning
    Xu, Wei-Guo
    Liu, Lin
    Han, Zheng-Bo
    DALTON TRANSACTIONS, 2024, 53 (12) : 5356 - 5359
  • [27] Membranes for CO2 /CH4 and CO2/N2 Gas Separation
    Chawla, Muhammad
    Saulat, Hammad
    Khan, Muhammad Masood
    Khan, Muhammad Mahmood
    Rafiq, Sikander
    Cheng, Linjuan
    Iqbal, Tanveer
    Rasheed, M. Imran
    Farooq, Muhammad Zohaib
    Saeed, Muhammad
    Ahmad, Nasir M.
    Niazi, Muhammad Bilal Khan
    Saqib, Sidra
    Jamil, Farrukh
    Mukhtar, Ahmad
    Muhammad, Nawshad
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (02) : 184 - 199
  • [28] Raman spectroscopic investigation of CH4 and N2 adsorption in metal-organic frameworks
    Siberio-Perez, Diana Y.
    Wong-Foy, Antek G.
    Yaghi, Omar M.
    Matzger, Adam J.
    CHEMISTRY OF MATERIALS, 2007, 19 (15) : 3681 - 3685
  • [29] Highly efficient separation of CO2/N2 and CO2/CH4 via metal-ion regulation in ultra-microporous metal-organic frameworks
    Zheng, Yanchun
    Chen, Yiqi
    Niu, Junjie
    Zhao, Tao
    Ibragimov, Aziz Bakhtiyarovich
    Xu, Hui
    Gao, Junkuo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [30] Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework
    Barcia, Patrick S.
    Bastin, Laurent
    Hurtado, Eric J.
    Silva, Jose A. C.
    Rodrigues, Alirio E.
    Chen, Banglin
    SEPARATION SCIENCE AND TECHNOLOGY, 2008, 43 (13) : 3494 - 3521