Multi-view spectral clustering based on constrained Laplacian rank

被引:2
作者
Song, Jinmei [1 ]
Liu, Baokai [1 ]
Yu, Yao [2 ]
Zhang, Kaiwu [1 ]
Du, Shiqiang [1 ,2 ,3 ]
机构
[1] Gansu Prov Northwest Minzu Univ, Key Lab Minzu Languages & Cultures Intelligent Inf, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Coll Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[3] Northwest Minzu Univ, Key Lab Linguist & Cultural Comp, Minist Educ, Lanzhou 730030, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Spectral clustering; Graph learning; Constrained Laplacian rank; GRAPH; SEGMENTATION;
D O I
10.1007/s00138-023-01497-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively.
引用
收藏
页数:14
相关论文
共 42 条
[41]   Latent Multi-view Subspace Clustering [J].
Zhang, Changqing ;
Hu, Qinghua ;
Fu, Huazhu ;
Zhu, Pengfei ;
Cao, Xiaochun .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4333-4341
[42]   Incremental multi-view spectral clustering [J].
Zhou, Peng ;
Shen, Yi-Dong ;
Du, Liang ;
Ye, Fan ;
Li, Xuejun .
KNOWLEDGE-BASED SYSTEMS, 2019, 174 :73-86