Lie-Trotter Formulae in Jordan-Banach Algebras with Applications to the Study of Spectral-Valued Multiplicative Functionals

被引:1
作者
Escolano, Gerardo M. [1 ]
Peralta, Antonio M. [1 ,2 ]
Villena, Armando R. [1 ,2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
[2] Univ Granada, Inst Matemat IMAG, Granada, Spain
关键词
Lie-Trotter formula; Banach algebra; Jordan-Banach algebra; spectrum; multiplicative functional; Gleason-Kahane-Zelazko theorem; Kowalski-Slodkowski theorem; preservers; LINEAR FUNCTIONALS;
D O I
10.1007/s00025-023-02043-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some Lie-Trotter formulae for unital complex Jordan-Banach algebras, showing that for any elements a, b, c in a unital complex Jordan-Banach algebra U the identities lim(n ->infinity) (e(a/n) circle e(b/n))(n) = e(a+b), lim(n ->infinity) (U-ea/n (e(b/n)))(n) = e(2a+b), and lim(n ->infinity) (U-ea/n,U-ec/n (e(b/n)))(n) = e(a+b+c) hold. These formulae are actually deduced from a more general result involving holomorphic functions with values in U. These formulae are employed in the study of spectral-valued (non-necessarily linear) functionals f : U -> C satisfying f(U-x(y)) = U-f(x)f(y), for all x, y is an element of U. We prove that for any such a functional f, there exists a unique continuous (Jordan-) multiplicative linear functional psi: U -> C such that f(x) = psi(x), for every x in the connected component of the set of all invertible elements of A containing the unit element. If we additionally assume that U is a JB*-algebra and f is continuous, then f is a linear multiplicative functional on U. The new conclusions are appropriate Jordan versions of results by Maouche, Brits, Mabrouk, Schulz, and Toure.
引用
收藏
页数:22
相关论文
共 24 条
  • [1] Alfsen E.M., 2003, MATH THEORY, DOI 10.1007/978-1-4612-0019-2
  • [2] Applebaum D., 2019, London Mathematical Society Student Texts, V93
  • [3] SPECTRAL CHARACTERIZATION OF THE SOCLE IN JORDAN-BANACH ALGEBRAS
    AUPETIT, B
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 : 479 - 489
  • [4] Aupetit B., 1991, A Primer on Spectral Theory, DOI [10.1007/978-1-4612-3048-9, DOI 10.1007/978-1-4612-3048-9]
  • [5] Bonsall F. F., 1973, ERGEBNISSE MATH IHRE, V80
  • [6] A multiplicative Gleason-Kahane-Zelazko theorem for C☆-algebras
    Brits, R.
    Mabrouk, M.
    Toure, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [7] Davies, 1980, LONDON MATH SOC MONO, V15
  • [8] Garcia MC, 2014, ENCYCLOP MATH APPL, V154, P1
  • [9] Garrett P, 2018, CAM ST AD M, V173, P1, DOI 10.1017/9781316650332
  • [10] Hall B.C., 2013, QUANTUM THEORY MATH, V267