Using machine learning to predict bleeding after cardiac surgery

被引:3
作者
Hui, Victor [1 ,2 ,7 ]
Litton, Edward [3 ,4 ]
Edibam, Cyrus [3 ]
Geldenhuys, Agneta [5 ]
Hahn, Rebecca [2 ,5 ]
Larbalestier, Robert [5 ]
Wright, Brian [6 ]
Pavey, Warren [2 ,6 ]
机构
[1] Royal Melbourne Hosp, Dept Anaesthesia & Pain Med, Melbourne, Vic, Australia
[2] Heart Lung Res Inst Western Australia, Perth, WA, Australia
[3] Fiona Stanley Hosp, Dept Intens Care, Perth, WA, Australia
[4] Univ Western Australia, Sch Med, Crawley, Australia
[5] Fiona Stanley Hosp, Dept Cardiothorac Surg, Perth, WA, Australia
[6] Fiona Stanley Hosp, Dept Anaesthesia Pain & Perioperat Med, Perth, WA, Australia
[7] Royal Melbourne Hosp, Dept Anaesthesia & Pain Med, 300 Grattan St, Parkville, Vic 3050, Australia
关键词
cardiac surgery; machine learning; bleeding; TRANSFUSION RISK; MORTALITY;
D O I
10.1093/ejcts/ezad297
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES The primary objective was to predict bleeding after cardiac surgery with machine learning using the data from the Australia New Zealand Society of Cardiac and Thoracic Surgeons Cardiac Surgery Database, cardiopulmonary bypass perfusion database, intensive care unit database and laboratory results.METHODS We obtained surgical, perfusion, intensive care unit and laboratory data from a single Australian tertiary cardiac surgical hospital from February 2015 to March 2022 and included 2000 patients undergoing cardiac surgery. We trained our models to predict either the Papworth definition or Dyke et al.'s universal definition of perioperative bleeding. Our primary outcome was the performance of our machine learning algorithms using sensitivity, specificity, positive and negative predictive values, accuracy, area under receiver operating characteristics curve (AUROC) and area under precision-recall curve (AUPRC).RESULTS Of the 2000 patients undergoing cardiac surgery, 13.3% (226/2000) had bleeding using the Papworth definition and 17.2% (343/2000) had moderate to massive bleeding using Dyke et al.'s definition. The best-performing model based on AUPRC was the Ensemble Voting Classifier model for both Papworth (AUPRC 0.310, AUROC 0.738) and Dyke definitions of bleeding (AUPRC 0.452, AUROC 0.797).CONCLUSIONS Machine learning can incorporate routinely collected data from various datasets to predict bleeding after cardiac surgery. Severe post-surgical cardiac bleeding is common and contributes to increased morbidity and mortality for patients undergoing cardiac surgery [1, 2].
引用
收藏
页数:9
相关论文
共 28 条
[1]  
Abadi M., 2016, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, DOI DOI 10.48550/ARXIV.1603.04467
[2]   Development and validation of Transfusion Risk Understanding Scoring Tool (TRUST) to stratify cardiac surgery patients according to their blood transfusion needs [J].
Alghamdi, AA ;
Davis, A ;
Brister, S ;
Corey, P ;
Logan, A .
TRANSFUSION, 2006, 46 (07) :1120-1129
[3]  
[Anonymous], 2006, P 23 INT C MACH LEAR
[4]  
ANZSCTS National Cardiac Surgery Database, 2017, Data Definitions Manual Version 4
[5]   Managing the coagulopathy associated with cardiopulmonary bypass [J].
Bartoszko, Justyna ;
Karkouti, Keyvan .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2021, 19 (03) :617-632
[6]   Prediction of severe bleeding after coronary surgery: the WILL-BLEED Risk Score [J].
Biancari, Fausto ;
Brascia, Debora ;
Onorati, Francesco ;
Reichart, Daniel ;
Perrotti, Andrea ;
Ruggieri, Vito G. ;
Santarpino, Giuseppe ;
Maselli, Daniele ;
Mariscalco, Giovanni ;
Gherli, Riccardo ;
Rubino, Antonin S. ;
De Feo, Marisa ;
Gatti, Giuseppe ;
Santini, Francesco ;
Dalen, Magnus ;
Saccocci, Matteo ;
Kinnunen, Eeva-Maija ;
Airaksinen, Juhani K. E. ;
D'Errigo, Paola ;
Rosato, Stefano ;
Nicolini, Francesco .
THROMBOSIS AND HAEMOSTASIS, 2017, 117 (03) :445-456
[7]  
Branco P, 2015, Arxiv, DOI [arXiv:1505.01658, DOI 10.1145/2907070, DOI 10.48550/ARXIV.1505.01658, 10.48550/arXiv.1505.01658]
[8]  
Buitinck L., 2013, PREPRINT, DOI [DOI 10.48550/ARXIV.1309.0238, DOI 10.48550/ARXIV.1309.0238,ARXIV]
[9]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[10]   Postoperative bleeding risk prediction for patients undergoing colorectal surgery [J].
Chen, David ;
Afzal, Naveed ;
Sohn, Sunghwan ;
Habermann, Elizabeth B. ;
Naessens, James M. ;
Larson, David W. ;
Liu, Hongfang .
SURGERY, 2018, 164 (06) :1209-1216