Transformer based multiple instance learning for WSI breast cancer classification

被引:6
作者
Gao, Chengyang [1 ,2 ]
Sun, Qiule [3 ]
Zhu, Wen [4 ]
Zhang, Lizhi [4 ]
Zhang, Jianxin [1 ,2 ]
Liu, Bin [5 ]
Zhang, Junxing [1 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian 116650, Peoples R China
[2] Dalian Minzu Univ, Inst Machine Intelligence & Biocomp, Dalian 116650, Peoples R China
[3] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[4] Dalian Med Univ, Affiliated Hosp 1, Dept Pathol, Dalian 116011, Peoples R China
[5] Dalian Univ Technol, DUT RUISE, Dalian 116620, Peoples R China
基金
中国国家自然科学基金;
关键词
WSI classification; Breast cancer; Multiple instance learning; Transformer;
D O I
10.1016/j.bspc.2023.105755
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The computer-aided diagnosis method based on deep learning provides pathologists with preliminary di-agnostic opinions and improves their work efficiency. Inspired by the widespread use of transformers in computer vision, we try to explore their effectiveness and potential in classifying breast cancer tissues in WSIs, and propose a hybrid multiple instance learning method called HTransMIL. Specifically, its first stage is to select informative instances based on hierarchical Swin Transformer, which can capture global and local information of pathological images and is beneficial for obtaining accurate discriminative instances. The second stage aims to strengthen the correlation between selected instances via another transformer encoder consistently and produce powerful bag-level features by aggregating interactived instances for classification. Besides, visualization analysis is utilized to better understand the weakly supervised classification model for WSIs. The extensive evaluation results on a private and two public WSI breast cancer datasets demonstrate the effectiveness and competitiveness of HTransMIL. The code and models are publicly available at https: //github.com/Chengyang852/Transformer-for-WSI-classification.
引用
收藏
页数:10
相关论文
共 49 条
  • [1] Current and future burden of breast cancer: Global statistics for 2020 and 2040
    Arnold, Melina
    Morgan, Eileen
    Rumgay, Harriet
    Mafra, Allini
    Singh, Deependra
    Laversanne, Mathieu
    Vignat, Jerome
    Gralow, Julie R.
    Cardoso, Fatima
    Siesling, Sabine
    Soerjomataram, Isabelle
    [J]. BREAST, 2022, 66 : 15 - 23
  • [2] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [3] Bellomo D, 2020, JCO PRECIS ONCOL, V4, P319, DOI [10.1200/po.19.00206, 10.1200/PO.19.00206]
  • [4] BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images
    Brancati, Nadia
    Anniciello, Anna Maria
    Pati, Pushpak
    Riccio, Daniel
    Scognamiglio, Giosue
    Jaume, Guillaume
    De Pietro, Giuseppe
    Di Bonito, Maurizio
    Foncubierta, Antonio
    Botti, Gerardo
    Gabrani, Maria
    Feroce, Florinda
    Frucci, Maria
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2022, 2022
  • [5] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [6] Chikontwe Philip, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P519, DOI 10.1007/978-3-030-59722-1_50
  • [7] Radiomics in breast cancer classification and prediction
    Conti, Allegra
    Duggento, Andrea
    Indovina, Iole
    Guerrisi, Maria
    Toschi, Nicola
    [J]. SEMINARS IN CANCER BIOLOGY, 2021, 72 : 238 - 250
  • [8] Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Gilmore, Hannah
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Madabhushi, Anant
    [J]. MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
  • [9] Ding SS, 2023, Arxiv, DOI arXiv:2305.15773
  • [10] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929