Black carbon emissions inventory and scenario analysis for Pakistan

被引:10
作者
Mir, Kaleem Anwar [1 ]
Purohit, Pallav [2 ]
Ijaz, Muhammad [1 ]
Bin Babar, Zaeem [3 ]
Mehmood, Shahbaz [1 ]
机构
[1] Govt Pakistan, Minist Climate Change & Environm Coordinat MoCC &, Global Climate Change Impact Studies Ctr GCISC, Islamabad 44000, Pakistan
[2] Int Inst Appl Syst Anal IIASA, Energy Climate & Environm ECE Program, Pollut Management Grp, Schlosspl 1, A-2361 Laxenburg, Austria
[3] Univ Punjab, Inst Energy & Environm Engn IEEE, Lahore 54590, Pakistan
关键词
Black carbon; Emissions inventory; Scenario analysis; Climate change; Air pollution; Emissions control; Public health; SOURCE APPORTIONMENT; PARTICULATE MATTER; TEMPORAL VARIATION; CLIMATE-CHANGE; AIR-POLLUTION; FOSSIL-FUEL; CHINA; TRENDS; ENERGY; GASES;
D O I
10.1016/j.envpol.2023.122745
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Black carbon (BC) emissions, resulting from the incomplete combustion of carbonaceous fuels, have been extensively linked to adverse impacts on air quality, climate change, and public health. Nevertheless, there is currently a lack of a comprehensive analysis that integrates activity-based BC emissions inventory and scenario analysis at the national/regional, sectoral, and sub-sectoral levels in Pakistan. This study aims to fill this gap by conducting a comprehensive evaluation of Pakistan's BC emissions inventory for 2021 along projecting emissions until 2050 under the reference emission scenario (RES) and the accelerated reduction scenario (ARS) using the GAINS modeling framework to assess the potential impact of mitigation measures. This study takes a unique approach by considering commonly overlooked sources of BC emissions, such as kerosene lighting, brick kilns, diesel generator sets, and natural gas flaring, which are not typically included in conventional analyses. National BC emissions in 2021 were estimated at 181 kt, with residential combustion being the major contributor, accounting for more than half (108 kt) of the total emissions. The transport, industry, waste, agriculture, power plants, and fuel conversion sectors contributed 26.1 kt, 20.1 kt, 10.7 kt, 8.9 kt, 6.0 kt, and 0.9 kt, respectively. We anticipate that the total BC emissions in Pakistan will reach 201 kt under the RES and 41 kt under the ARS scenario by the year 2050. The ARS achieves substantial BC reductions by the adoption of cleaner fuels, improved biomass stoves, end-of-pipe emission control technologies with higher removal efficiencies, and implementing a ban on the open burning of waste and crop residues. This study underscores the considerable potential for reducing BC emissions across various sectors in Pakistan over the next three decades.
引用
收藏
页数:15
相关论文
共 50 条
[41]   Forecasting and Scenario Analysis of Carbon Emissions in Key Industries: A Case Study in Henan Province, China [J].
Guo, Yilin ;
Hou, Zhengmeng ;
Fang, Yanli ;
Wang, Qichen ;
Huang, Liangchao ;
Luo, Jiashun ;
Shi, Tianle ;
Sun, Wei .
ENERGIES, 2023, 16 (20)
[42]   Chemical Feedback From Decreasing Carbon Monoxide Emissions [J].
Gaubert, B. ;
Worden, H. M. ;
Arellano, A. F. J. ;
Emmons, L. K. ;
Tilmes, S. ;
Barre, J. ;
Alonso, S. Martinez ;
Vitt, F. ;
Anderson, J. L. ;
Alkemade, F. ;
Houweling, S. ;
Edwards, D. P. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (19) :9985-9995
[43]   Evaluation of the anthropogenic black carbon emissions and deposition on Norway spruce and silver birch foliage in the Baltic region [J].
Bycenkiene, Steigvile ;
Pashneva, Daria ;
Uoginte, Ieva ;
Pauraite, Julija ;
Minderyte, Agne ;
Davuliene, Lina ;
Plauskaite, Kristina ;
Skapas, Martynas ;
Dudoitis, Vadimas ;
Touqeer, Gill ;
Andriejauskiene, Jelena ;
Araminiene, Valda ;
Dzenajaviciene, Eugenija Farida ;
Sicard, Pierre ;
Gudynaite-Franckeviciene, Valda ;
Varnagiryte-Kabasinskiene, Iveta ;
Pedisius, Nerijus ;
Lemanas, Egidijus ;
Vonzodas, Tomas .
ENVIRONMENTAL RESEARCH, 2022, 207
[44]   The consumption-based black carbon emissions of China's megacities [J].
Meng, Jing ;
Mi, Zhifu ;
Yang, Haozhe ;
Shan, Yuli ;
Guan, Dabo ;
Liu, Junfeng .
JOURNAL OF CLEANER PRODUCTION, 2017, 161 :1275-1282
[45]   Spatial distribution of black carbon emissions in China [J].
ZHANG Nan ;
QIN Yue ;
XIE ShaoDong .
Science Bulletin, 2013, (31) :3853-3862
[46]   Spatial and temporal analysis of black carbon aerosols in Istanbul megacity [J].
Ozdemir, Huseyin ;
Pozzoli, Luca ;
Kindap, Tayfun ;
Demir, Goksel ;
Mertoglu, Bulent ;
Mihalopoulos, Nikos ;
Theodosi, Christina ;
Kanakidou, Maria ;
Im, Ulas ;
Unal, Alper .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 473 :451-458
[47]   Analysis of black carbon on filters by image-based reflectance [J].
Jeronimo, Matthew ;
Stewart, Quinn ;
Weakley, Andrew T. ;
Giacomo, Jason ;
Zhang, Xiaolu ;
Hyslop, Nicole ;
Dillner, Ann M. ;
Shupler, Matthew ;
Brauer, Michael .
ATMOSPHERIC ENVIRONMENT, 2020, 223
[48]   Source identification and global implications of black carbon [J].
Blanco-Donado, Erika P. ;
Schneider, Ismael L. ;
Artaxo, Paulo ;
Lozano-Osorio, Jesus ;
Portz, Luana ;
Oliveira, Marcos L. S. .
GEOSCIENCE FRONTIERS, 2022, 13 (01)
[49]   Correlation and time-series analysis of black carbon in the coal mine regions of India: a case study [J].
Makkhan, Sidhu Jitendra Singh ;
Parmar, Kulwinder Singh ;
Kaushal, Sachin ;
Soni, Kirti .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2020, 6 (02) :659-669
[50]   Spatial correlation evolution and prediction scenario of land use carbon emissions in the Yellow River Basin [J].
Rong, Tianqi ;
Zhang, Pengyan ;
Li, Guanghui ;
Wang, Qianxu ;
Zheng, Hongtao ;
Chang, Yinghui ;
Zhang, Ying .
ECOLOGICAL INDICATORS, 2023, 154