Multiplicative Functions Resembling the Mobius Function

被引:0
作者
Liu, Qing Yang [1 ,2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China
关键词
Mobius function; random multiplicative function; zeta-function;
D O I
10.1007/s10114-023-2259-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multiplicative function f is said to be resembling the Mobius function if f is supported on the square-free integers, and f(p) = +/- 1 for each prime p. We prove O-and Omega-results for the summatory function Sigma(n <= x) f(n) for a class of these f, and the point is that these O-results demonstrate cancellations better than the square-root saving. It is proved in particular that the summatory function is O(x(1/3+epsilon)) under the Riemann Hypothesis. On the other hand it is proved to be Omega (x(1/ 4)) unconditionally. It is interesting to compare these with the corresponding results for the Mobius function.
引用
收藏
页码:2316 / 2328
页数:13
相关论文
共 50 条
  • [31] The Mobius function of generalized factor order
    Willenbring, Robert
    DISCRETE MATHEMATICS, 2013, 313 (04) : 330 - 347
  • [32] Exponential sums formed with the Mobius function
    Jiang, Yujiao
    Lu, Guangshi
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (02): : 355 - 364
  • [33] An algorithm to generate square-free numbers and to compute the Mobius function
    Auil, F.
    JOURNAL OF NUMBER THEORY, 2013, 133 (02) : 426 - 436
  • [34] Iterating the Sum of Mobius Divisor Function and Euler Totient Function
    Kim, Daeyeoul
    Sarp, Umit
    Ikikardes, Sebahattin
    MATHEMATICS, 2019, 7 (11)
  • [35] ON MEAN VALUES OF RANDOM MULTIPLICATIVE FUNCTIONS
    Lau, Yuk-Kam
    Tenenbaum, Gerald
    Wu, Jie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 409 - 420
  • [36] The partition function p(n) in terms of the classical Mobius function
    Merca, Mircea
    Schmidt, Maxie D.
    RAMANUJAN JOURNAL, 2019, 49 (01) : 87 - 96
  • [37] Some explicit formulas for partial sums of Mobius functions
    Inoue, Shota
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2021, 33 (02): : 273 - 315
  • [38] Some arithmetic properties of an analogue of Mobius function
    Muthumalai, Ramesh Kumar
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (02) : 92 - 96
  • [39] A generalization of Apostol's Mobius functions of order k
    Bege, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (03): : 293 - 301
  • [40] The average order of the Mobius function for Beurling primes
    Neamah, Ammar Ali
    Hilberdink, Titus W.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (05) : 1005 - 1011