Almost sharp weighted Sobolev trace inequalities in the unit ball under constraints

被引:0
作者
An, Jiaxing [1 ]
Dou, Jingbo [1 ]
Han, Yazhou [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[2] China Jiliang Univ, Coll Sci, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Sobolev trace inequality; higher order moments constraint; concentration compactness principle; almost optimal constant; CONSTANTS;
D O I
10.1142/S0219199723500256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some improved weighted Sobolev trace inequalities H-1(rho(1-2 sigma), Bn+1)hooked right arrow L-q(S-n) under the zero higher order moments constraint via the concentration compactness principle, where rho is a defining function of Bn+1 and sigma is an element of (0, 1). This relates to the fractional (conformal) Laplacians and related problems in conformal geometry. We construct some test functions and show that the inequality is almost optimal when sigma is an element of(0, 1/2].
引用
收藏
页数:29
相关论文
共 19 条
[1]  
[Anonymous], 2016, Introduction to Fourier analysis on Euclidean spaces (PMS-32)
[3]  
Aubin T., 1976, J. Differ. Geom., V11, P573
[4]   ImprovedMoser-Trudinger-OnofriInequality under Constraints [J].
Chang, Sun-Yung A. ;
Hang, Fengbo .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (01) :197-220
[5]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[6]  
González MD, 2018, RECENT DEVELOPMENTS IN NONLOCAL THEORY, P236, DOI 10.1515/9783110571561-008
[7]   FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS [J].
del Mar Gonzalez, Maria ;
Qing, Jie .
ANALYSIS & PDE, 2013, 6 (07) :1535-1576
[8]   Divergent operator with degeneracy and related sharp inequalities [J].
Dou, Jingbo ;
Sun, Liming ;
Wang, Lei ;
Zhu, Meijun .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
[9]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[10]   Scattering matrix in conformal geometry [J].
Graham, CR ;
Zworski, M .
INVENTIONES MATHEMATICAE, 2003, 152 (01) :89-118