Electrochemical Performance of MnO2 Composite with Activated Carbon for Supercapacitor Applications

被引:0
作者
Saini, Sunaina [1 ]
Chand, Prakash [1 ]
Joshi, Aman [1 ,2 ]
机构
[1] Natl Inst Technol, Dept Phys, Kurukshetra 136119, India
[2] JC Bose Univ Sci & Technol, Dept Phys, YMCA Faridabad, Faridabad 121006, India
关键词
Manganese Oxide; Activated Carbon; Morphology; Composite; Electrolyte; Supercapacitors; GRAPHENE; ELECTRODES;
D O I
10.56042/ijems.v30i3.3681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electric vehicles/hybrid electric vehicles, next-generation personal electronics, and stationary storage have all benefited from the energy storage system (ESS) revolution. The preparation of new and especially eco-friendly electrode material is an important task in the development of modern electrochemical energy storage devices. In the present work, MnO2 nanostructures in composite with activated carbon were synthesized via a facile hydrothermal method. X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM) were used to examine the structure, crystallite size, and morphology of the produced samples (SEM). The absence of an impurity peak in the X-ray diffraction pattern suggested that MnO2 nanostructures formed in the tetragonal phase. The Scherrer formula was used to determine the typical size of the crystallites. The creation of nanosheets and nanorods, as seen by SEM analysis, also contributed to the improved charge storage capacity. Also, the electrochemical properties of synthesized material were studied through a three-electrode system by using KNO3 and KOH as aqueous electrolytes. The Cyclic Voltammetry (CV) and the Galvanostatic Charge-Discharge (GCD) study showed that the KNO3 electrolyte is more suitable as the capacitance obtained is much higher in comparison with KOH. The highest specific capacitance of 317 F/g is achieved at 1A/g current density for the KNO3 electrolyte. Furthermore, Electrochemical Impedance Spectroscopy (EIS) confirmed that the resistance offered by KOH is higher for this composite. The research found that the synthesized material might be employed for supercapacitor applications as their electrode material.
引用
收藏
页码:424 / 430
页数:7
相关论文
共 25 条
[1]   Metal oxide-based supercapacitors: progress and prospectives [J].
An, Cuihua ;
Zhang, Yan ;
Guo, Huinan ;
Wang, Yijing .
NANOSCALE ADVANCES, 2019, 1 (12) :4644-4658
[2]   Reinforcing effect of graphene nanoplatelets in the electrochemical behaviour of manganese oxide-based supercapacitors produced by EPD [J].
Arguello, Juan A. ;
Cerpa, Arisbel ;
Moreno, Rodrigo .
CERAMICS INTERNATIONAL, 2019, 45 (11) :14316-14321
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[4]  
Bard A.J., 1980, ELECTROCHEMICAL METH
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors [J].
Chodankar, Nilesh R. ;
Pham, Hong Duc ;
Nanjundan, Ashok Kumar ;
Fernando, Joseph F. S. ;
Jayaramulu, Kolleboyina ;
Golberg, Dmitri ;
Han, Young-Kyu ;
Dubal, Deepak P. .
SMALL, 2020, 16 (37)
[7]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[8]  
Fan J, 2013, IEEE INT C NANOTECHN, P933
[9]   Review on supercapacitors: Technologies and materials [J].
Gonzalez, Ander ;
Goikolea, Eider ;
Andoni Barrena, Jon ;
Mysyk, Roman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 :1189-1206
[10]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568