UPPER BOUNDS ON THE SEMITOTAL FORCING NUMBER OF GRAPHS

被引:0
作者
Liang, Yi-Ping [1 ]
Chen, Jie [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
semitotal forcing number; NP-complete; extremal graph; upper bound;
D O I
10.1017/S000497272300045X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with no isolated vertex. A semitotal forcing set of G is a (zero) forcing set S such that every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number F-t2(G) is the minimum cardinality of a semitotal forcing set in G. In this paper, we prove that it is NP-complete to determine the semitotal forcing number of a graph. We also prove that if G ? K(n )is a connected graph of order n = 4 with maximum degree ? = 2, then F-t2(G) = (? - 1)n/?, with equality if and only if either G = C(4)or G = P(4)or G = K-?,K-?.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 50 条
[41]   Upper bounds for the spread of a matrix [J].
Wu, Junliang ;
Zhang, Pingping ;
Liao, Wenshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) :2813-2822
[42]   Upper bounds of Schubert polynomials [J].
Neil Jiuyu Fan ;
Peter Long Guo .
Science China Mathematics, 2022, 65 :1319-1330
[43]   On upper bounds for the energy of digraphs [J].
Tian, Gui-Xian ;
Cui, Shu-Yu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) :4742-4749
[44]   Upper bounds of the continuous ARE solution [J].
Kim, SW ;
Park, P .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (02) :380-385
[45]   Upper bounds of Schubert polynomials [J].
Fan, Neil Jiuyu ;
Guo, Peter Long .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (06) :1319-1330
[46]   Upper Bounds and Constructions of Locating Arrays [J].
Shi, Ce ;
Fu, Jianfeng ;
Wang, Chengmin ;
Yan, Jie .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (05) :827-833
[47]   Upper bounds for Gaussian stochastic programs [J].
Pritchard, G ;
Zakeri, G .
MATHEMATICAL PROGRAMMING, 1999, 86 (01) :51-63
[48]   Upper Bounds for the Laplacian Graph Eigenvalues [J].
Jiong Sheng Li ;
Yong Liang Pan .
Acta Mathematica Sinica, 2004, 20 :803-806
[49]   Upper Bounds for the Laplacian Graph Eigenvalues [J].
Jiong Sheng LI Yong Liang PAN Department of MathematicsUniversity of Science and Technology of ChinaHefei PRChina .
ActaMathematicaSinica(EnglishSeries), 2004, 20 (05) :803-806
[50]   On upper bounds for Laplacian graph eigenvalues [J].
Zhu, Dongmei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2764-2772