Nanofiber-in-microfiber carbon/silicon composite anode with high silicon content for lithium-ion batteries

被引:35
作者
Pei, Yixian [1 ]
Wang, Yuxin [2 ]
Chang, An-Yi [2 ]
Liao, Yixin [2 ]
Zhang, Shuan [1 ]
Wen, Xiufang [1 ]
Wang, Shengnian [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Louisiana Tech Univ, Inst Micromfg, Chem Engn, POB 10137, Ruston, LA 71272 USA
基金
美国国家科学基金会;
关键词
Silicon-rich anode; Nanofiber; Microfiber; Lithium-ion batteries; Composites; ELECTRICAL ENERGY-STORAGE; POROUS CARBON NANOFIBERS; ELECTROCHEMICAL PERFORMANCE; NANOPARTICLES; FABRICATION; FIBERS;
D O I
10.1016/j.carbon.2022.11.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon-rich anodes are desired to leverage the energy capacity of lithium-ion batteries (LIBs) towards critical markets. We prepared new silicon-rich composite anodes with a nanofiber-in-microfiber architecture using a co-axial electrospinning setup. A polyvinyl alcohol (PVA) solution that allows high silicon content serves as the central stream, which holds silicon nanoparticles into short, branched composite nanofibers. These nanofibers were wrapped by long, ductile microfibers made of polyacrylonitrile (PAN) that is supplied in the sheath fluid. After carbonization, the received carbon/silicon composites were tested as the anode of LIBs, in which the silicon-rich nanofibers host the majority of lithium ions while their thin carbon skin originated from PVA pro-motes the conductivity and charge transfer. The outside PAN-derived microfibers provide needed structural support for those encapsulated silicon-rich nanofibers, making the final composites also an integrated, three-dimensional current collector. The nanofibrous morphology and the void space in between help accommodate the notorious volume expansion issues during lithiation/delithiation. The new composites were confirmed on their nanofiber-in-microfiber configuration. With a Si content of 40%, this unique fibrous anode material ach-ieves-900 mAh g-1 specific capacity and-90% capacity retention from cycle 50 to cycle 250 by effectively balancing some major challenges associated with silicon-rich anodes.
引用
收藏
页码:436 / 444
页数:9
相关论文
共 50 条
  • [1] Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries
    Wang, Yuxin
    Wen, Xiufang
    Chen, Juan
    Wang, Shengnian
    JOURNAL OF POWER SOURCES, 2015, 281 : 285 - 292
  • [2] Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries
    Zhang, Meng
    Bai, Nan
    Lin, Wenfeng
    Wang, Hao
    Li, Jin
    Ma, Ling
    Wang, Xiaomeng
    Zhang, Dianping
    Cao, Zhijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [3] Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries
    Li, Xiaohui
    Wu, Mengqiang
    Feng, Tingting
    Xu, Ziqiang
    Qin, Jingang
    Chen, Cheng
    Tu, Chengyang
    Wang, Dongxia
    RSC ADVANCES, 2017, 7 (76) : 48286 - 48293
  • [4] Silicon doped carbon nanotubes as high energy anode for lithium-ion batteries
    Gonzalez, Isaias Zeferino
    Chiu, Hsien-Chieh
    Gauvin, Raynald
    Demopoulos, George P.
    Verde-Gomez, Ysmael
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [5] Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries
    Zhou, Yu
    Guo, Huajun
    Yang, Yong
    Wang, Zhixing
    Li, Xinhai
    Zhou, Rong
    Peng, Wenjie
    MATERIALS LETTERS, 2016, 168 : 138 - 142
  • [6] Optimal Microstructure of Silicon Monoxide as the Anode for Lithium-Ion Batteries
    Zhang, Linghong
    Liu, Yuzi
    Guo, Fangmin
    Ren, Yang
    Lu, Wenquan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) : 51965 - 51974
  • [7] High capacity silicon/carbon composite anode materials for lithium ion batteries
    Wen, ZS
    Yang, J
    Wang, BF
    Wang, K
    Liu, Y
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) : 165 - 168
  • [8] A Hollow Silicon Nanosphere/Carbon Nanotube Composite as an Anode Material for Lithium-Ion Batteries
    Tang, Hao
    Xu, Yuanyuan
    Liu, Li
    Zhao, Decheng
    Zhang, Zhen
    Wu, Yutong
    Zhang, Yi
    Liu, Xiang
    Wang, Zhoulu
    COATINGS, 2022, 12 (10)
  • [9] Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries
    Cong, Ruye
    Choi, Jin-Yeong
    Song, Ju-Beom
    Jo, Minsang
    Lee, Hochun
    Lee, Chang-Seop
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Silicon nanotube anode for lithium-ion batteries
    Wen, Zhenhai
    Lu, Ganhua
    Mao, Shun
    Kim, Haejune
    Cui, Shumao
    Yu, Kehan
    Huang, Xingkang
    Hurley, Patrick T.
    Mao, Ou
    Chen, Junhong
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 29 : 67 - 70