Response Time of Vegetation to Drought in Weihe River Basin, China

被引:5
|
作者
Fan, Jingjing [1 ,2 ]
Wei, Shibo [1 ,2 ]
Liu, Guanpeng [1 ,2 ]
Zhou, Xiong [3 ]
Li, Yunyun [4 ]
Wu, Chenyu [1 ,2 ]
Xu, Fanfan [1 ,2 ]
机构
[1] Hebei Univ Engn, Coll Water Resources & Hydropower, Handan 056038, Peoples R China
[2] Hebei Univ Engn, Hebei Key Lab Intelligent Water Conservancy, Handan 056038, Peoples R China
[3] Beijing Normal Univ, China Canada Ctr Energy Environm & Ecol Res, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100875, Peoples R China
[4] Coll Resources & Environm Engn, Mianyang Teachers Coll, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
standardized precipitation evapotranspiration index (SPEI); standardized precipitation index (SPI); normalized difference vegetation index (NDVI); Weihe River basin; SCALES; PRECIPITATION; IMPACTS;
D O I
10.3390/atmos14060938
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Frequent droughts may have negative influences on the ecosystem (i.e., terrestrial vegetation) under a warming climate condition. In this study, the linear regression method was first used to analyze trends in vegetation change (normalized difference vegetation index (NDVI)) and drought indices (Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)). The Pearson Correlation analysis was then used to quantify drought impacts on terrestrial vegetation in the Weihe River Basin (WRB); in particular, the response time of vegetation to multiple time scales of drought (RTVD) in the WRB was also investigated. The trend analysis results indicated that 89.77% of the area of the basin showed a significant increasing trend in NDVI from 2000 to 2019. There were also significant variations in NDVI during the year, with the highest rate in June (0.01) and the lowest rate in January (0.002). From 2000 to 2019, SPI and SPEI at different time scales in the WRB showed an overall increasing trend, which indicated that the drought was alleviated. The results of correlation analysis showed that the response time of vegetation to drought in the WRB from 2000 to 2019 was significantly spatially heterogeneous. For NDVI to SPEI, the response time of 12 months was widely distributed in the north; however, the response time of 24 months was mainly distributed in the middle basin. The response time of NDVI to SPI was short and was mainly concentrated at 3 and 6 months; in detail, the response time of 3 months was mainly distributed in the east, while a response time of 6 months was widely distributed in the west. In autumn and winter, the response time of NDVI to SPEI was longer (12 and 24 months), while the response time of NDVI to SPI was shorter (3 months). From the maximum correlation coefficient, the response of grassland to drought (SPEI and SPI) at different time scales (i.e., 6, 12, and 24 months) was higher than that of cultivated land, forestland, and artificial surface. The results may help improve our understanding of the impacts of climatic changes on vegetation cover.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Assessment of precipitation and drought variability in the Weihe River Basin, China
    Jianxia Chang
    Yunyun Li
    Yi Ren
    Yimin Wang
    Arabian Journal of Geosciences, 2016, 9
  • [2] Assessment of precipitation and drought variability in the Weihe River Basin, China
    Chang, Jianxia
    Li, Yunyun
    Ren, Yi
    Wang, Yimin
    ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (14)
  • [3] The dynamic change of propagation from meteorological drought to hydrological drought at the basin scale: A case study from the Weihe River Basin, China
    Zhao, Panpan
    Xie, Bingbo
    Huang, Xudong
    Qu, Bo
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [4] Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China
    Jiang, Weixia
    Niu, Zigeng
    Wang, Lunche
    Yao, Rui
    Gui, Xuan
    Xiang, Feifei
    Ji, Yuxi
    REMOTE SENSING, 2022, 14 (04)
  • [5] The Impact of Drought on Vegetation at Basin Scale: A Case Study of the Wei River Basin, China
    Zhao, Panpan
    Chai, Qihui
    Xie, Bingbo
    Li, Hongyang
    Yang, Huicai
    Wan, Fang
    Huang, Xudong
    REMOTE SENSING, 2024, 16 (21)
  • [6] Detecting runoff variation in Weihe River basin, China
    Fan Jingjing
    Huang Qiang
    Cui Shen
    Guo Aijun
    REMOTE SENSING AND GIS FOR HYDROLOGY AND WATER RESOURCES, 2015, 368 : 233 - 238
  • [7] Drought monitoring and reliability evaluation of the latest TMPA precipitation data in the Weihe River Basin, Northwest China
    Jiang Shanhu
    Ren Liliang
    Zhou Meng
    Yong Bin
    Zhang Yu
    Ma Mingwei
    JOURNAL OF ARID LAND, 2017, 9 (02) : 256 - 269
  • [8] Drought monitoring and reliability evaluation of the latest TMPA precipitation data in the Weihe River Basin, Northwest China
    Shanhu Jiang
    Liliang Ren
    Meng Zhou
    Bin Yong
    Yu Zhang
    Mingwei Ma
    Journal of Arid Land, 2017, 9 : 256 - 269
  • [9] Drought monitoring and reliability evaluation of the latest TMPA precipitation data in the Weihe River Basin, Northwest China
    JIANG Shanhu
    REN Liliang
    ZHOU Meng
    YONG Bin
    ZHANG Yu
    MA Mingwei
    Journal of Arid Land, 2017, 9 (02) : 256 - 269
  • [10] Effects of different types of drought on vegetation in Huang-Huai-Hai River Basin, China
    Shi, Xiaoliang
    Ding, Hao
    Wu, Mengyue
    Zhang, Na
    Shi, Mengqi
    Chen, Fei
    Li, Yi
    ECOLOGICAL INDICATORS, 2022, 144