Influence of phosphorus-doped bilayer graphene configuration on the oxygen reduction reaction in acidic solution

被引:1
|
作者
Pham, Nguyet N. T. [1 ]
Nguyen, Van Kieu Thuy [1 ]
Guo, Hengquan [2 ]
Lee, Seung Geol [2 ,3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, 227 Nguyen Van Cu, Ho Chi Minh City 700000, Vietnam
[2] Pusan Natl Univ, Sch Chem Engn, 2,Busandaehak Ro 63 Beon Gil, Busan 46241, South Korea
[3] Pusan Natl Univ, Sch Organ Mat Sci & Engn, 2,Busandaehak Ro 63 Beon Gil, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Polymer electrolyte membrane fuel cell; Phosphorus doping; Bilayer graphene; Oxygen reduction reaction; Density functional theory; METAL-FREE ELECTROCATALYSTS; TOTAL-ENERGY CALCULATIONS; ACTIVE-SITES; CATALYSTS; CARBON; PERFORMANCE; MECHANISMS; GRAPHITE; NITROGEN; PROGRESS;
D O I
10.1016/j.carbon.2023.118012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The challenges posed by global warming and climate change can be solved by utilizing alternative and renewable energy sources to provide efficient and ecofriendly energy for sustainable energy conversion. Fuel cells, especially polymer electrolyte membrane fuel cells (PEMFCs), can convert air pollution via chemical reactions to generate electricity and water and are considered next-generation technologies for the green economy. The oxygen reduction reaction (ORR) at the catalyst layer plays an important role in determining a fuel cell's price and electrochemical performance. Recently, non-platinum-group metals (non-PGMs) have emerged as promising low-cost and high-performance catalysts for PEMFCs. This study investigates the electronic properties and the electrocatalytic activity of a single P-doped monovacancy (PC3-BLG) and divacancy (PC4-BLG) of an AB-bilayer graphene in a sulfuric acid solution. The results show that the PC3-BLG exhibits greater stability and better electrocatalytic activity than the PC4-BLG. For the PC3-BLGs, an indirect energy gap of similar to 0.46 eV is predicted, suggesting a transformation from a half-metallic to a small-bandgap semiconductor, whereas the PC4-BLG is predicted to be a p-type semiconductor. An activation energy of 0.54 eV was found for the PC3-BLG, where the rate-limiting step in the ORR is the formation of a second H2O molecule, indicating that phosphorus-doped monovacancy at the hollow site of bilayer graphene (PC3-BLG) is a promising non-PGM alternative to Pt/C catalysts under acidic conditions. These points suggest potential strategies for including carbon-allotrope-based materials in the design of efficient non-PGM catalysts for the ORR.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Size Optimization of a N-Doped Graphene Nanocluster for the Oxygen Reduction Reaction
    Matsuyama, Haruyuki
    Nakamura, Jun
    ACS OMEGA, 2022, 7 (03): : 3093 - 3098
  • [42] Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen reaction reduction
    Sun, Lang
    Luo, Yi
    Li, Ming
    Hu, Guanghui
    Xu, Yongjie
    Tang, Tao
    Wen, Jianfeng
    Li, Xinyu
    Wang, Liang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 508 : 154 - 158
  • [43] Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene
    Wang Jun
    Li Li
    Wei Zi-Dong
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (01) : 321 - 328
  • [44] Phosphorus-doped porous graphene nanosheet as metal-free electrocatalyst for triiodide reduction reaction in dye-sensitized solar cell
    Xu, Xiuwen
    Yang, Wang
    Chen, Bing
    Zhou, Chen
    Ma, Xinlong
    Hou, Liqiang
    Tang, Yushu
    Yang, Fan
    Ning, Guoqing
    Zhang, Liqiang
    Li, Yongfeng
    APPLIED SURFACE SCIENCE, 2017, 405 : 308 - 315
  • [45] Phosphorus-Doped Exfoliated Graphene for Supercapacitor Electrodes
    Karthika, P.
    Rajalakshmi, N.
    Dhathathreyan, K. S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (03) : 1746 - 1751
  • [46] Density functional theory study of active sites on nitrogen-doped graphene for oxygen reduction reaction
    Yan, Ping
    Shu, Song
    Zou, Longhua
    Liu, Yongjun
    Li, Jianjun
    Wei, Fusheng
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (09):
  • [47] Theoretical Investigation of the Active Sites in N-Doped Graphene Bilayer for the Oxygen Reduction Reaction in Alkaline Media in PEMFCs
    Pham, Nguyet N. T.
    Kim, Kwang Ho
    Han, Byungchan
    Lee, Seung Geol
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (13) : 5863 - 5872
  • [48] First principle studies of oxygen reduction reaction on N doped graphene: Impact of N concentration, position and co-adsorbate effect
    Man, Isabela-Costinela
    Tranca, Ionut
    Soriga, Stefan-Gabriel
    APPLIED SURFACE SCIENCE, 2020, 510
  • [49] Phosphorus-doped porous carbon with exceptional electrocatalytic performance for oxygen evolution reaction
    Chen, Shuhao
    Meng, Juan
    Zhang, Anzheng
    Xu, Rui
    Zhang, Hongyu
    Jiang, Jie
    Zhou, Yue
    Yang, Zhou
    Qin, Hengfei
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [50] Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution
    Guo, Jiahao
    Zhang, Jianguo
    Zhao, Hanqing
    Fang, Yongshuang
    Ming, Kun
    Huang, Hao
    Chen, Junming
    Wang, Xuchun
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (10):