CFD modelling of steel desulfurisation in a gas-stirred ladle

被引:3
|
作者
Mao, Congshan [1 ]
Guo, Xipeng [1 ]
Walla, Nicholas J. [1 ]
Silaen, Armin K. [1 ]
Thapliyal, Vivek [2 ]
Zhou, Chenn Q. [1 ,3 ]
机构
[1] Purdue Univ Northwest, Ctr Innovat Visualizat & Simulat, Hammond, IN USA
[2] Nucor Steel, Blytheville, AR USA
[3] Purdue Univ Northwest, Ctr Innovat Visualizat & Simulat, Hammond, IN 46323 USA
基金
美国国家科学基金会;
关键词
CFD; Ladle; Multiphase flow; Steel desulfurization; Mass transfer; Turbulence flow; Slag eye; Argon gas injection; SULFIDE CAPACITY; OPTICAL BASICITY; KINETIC-MODEL; MASS-TRANSFER; BEHAVIOR; SULFUR; SLAGS; PREDICTION; FLOW; MELT;
D O I
10.1080/03019233.2023.2195308
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Low sulfur content is crucial in secondary steelmaking to enhance steel quality. The desulfurization rate is influenced by slag-steel interactions, including slag eye size and interfacial mass transfer coefficient. Gas-stirred ladles can impact the interaction through stirring conditions such as argon flow rate and dual plug separation angle. Using a 3D CFD simulation model, the effects of different stirring conditions on the desulfurization rates, molten steel flow, and slag-steel interfacial behaviors were investigated. Results showed that 180 degrees separation angle leads to higher desulfurization efficiency than 90 degrees. A higher argon gas flow rate increases desulfurization rate, and using 20 SCFM (8.92x10(-3) Nm(3)/s) argon flow rate for both plugs resulted in higher desulfurization rate than using 5 SCFM (2.23x10(-3) Nm(3)/s) for one plug and 20 SCFM for the other. The smallest desulfurization efficiency was observed when using 5 SCFM for both plugs.
引用
收藏
页码:1539 / 1550
页数:12
相关论文
共 50 条
  • [31] Modeling and Optimisation of Gas Stirred Ladle Systems
    Mazumdar, Dipak
    Dhandapani, Palani
    Sarvanakumar, Rajagopal
    ISIJ INTERNATIONAL, 2017, 57 (02) : 286 - 295
  • [32] CFD modelling of inorganic membrane modules for gas mixture separation
    Coroneo, M.
    Montante, G.
    Baschetti, M. Giacinti
    Paglianti, A.
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (05) : 1085 - 1094
  • [33] CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank
    Wang, Hongna
    Jia, Xiaoqiang
    Wang, Xue
    Zhou, Zhengxi
    Wen, Jianping
    Zhang, Jinli
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (01) : 63 - 92
  • [34] CFD modelling and mixing in stirred tanks
    Sahu, AK
    Kumar, P
    Patwardhan, AW
    Joshi, JB
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (13-14) : 2285 - 2293
  • [35] Process model of inclusion separation in a stirred steel ladle
    Hallberg, M
    Jönsson, PG
    Jonsson, TLI
    Eriksson, R
    SCANDINAVIAN JOURNAL OF METALLURGY, 2005, 34 (01) : 41 - 56
  • [36] Toward Better Control of Inclusion Cleanliness in a Gas Stirred Ladle Using Multiscale Numerical Modeling
    Bellot, Jean-Pierre
    Kroll-Rabotin, Jean-Sebastien
    Gisselbrecht, Matthieu
    Joishi, Manoj
    Saxena, Akash
    Sanders, Sean
    Jardy, Alain
    MATERIALS, 2018, 11 (07):
  • [37] Large Bubble-Resolved Direct Numerical Simulation for Multiphase Flow Applied to Gas-Stirred Ladles: Grid Resolution and Plug Eccentricity Effects
    Li, Qiang
    Pistorius, Petrus Christiaan
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2023, 54 (03): : 1290 - 1313
  • [38] CFD modeling of gas entrainment in stirred tank systems
    Kulkarni, A. L.
    Patwardhan, A. W.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (07): : 1227 - 1248
  • [39] Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach
    Cao, Qing
    Nastac, Laurentiu
    Pitts-Baggett, April
    Yu, Qiulin
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2018, 49 (03): : 988 - 1002
  • [40] CFD MODEL FOR PREDICTION OF LIQUID STEEL TEMPERATURE IN LADLE DURING STEEL MAKING AND CASTING
    Tripathi, Anurag
    Saha, J. K.
    Singh, J. B.
    Ajmani, S. K.
    CFD MODELING AND SIMULATION IN MATERIALS PROCESSING, 2012, : 295 - 302