Stability of matrix polynomials in one and several variables

被引:0
作者
Szymanski, Oskar Jakub [1 ]
Wojtylak, Michal [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Matrix polynomial; Eigenvalue; Stability; Polarisation operator; Multivariate polynomial; NUMERICAL RANGE; EIGENVALUES; BOUNDS; ROOTS;
D O I
10.1016/j.laa.2023.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents methods for the eigenvalue localisation of regular matrix polynomials, in particular, the stability of matrix polynomials is investigated. For this aim a stronger notion of hyperstability is introduced and widely discussed. Matrix versions of the Gauss-Lucas theorem and Szasz inequality are shown. Further, tools for investigating (hyper) -stability by multivariate complex analysis methods are provid-ed. Several seconds-and third-order matrix polynomials with particular semi-definiteness assumptions on coefficients are shown to be stable.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 67
页数:26
相关论文
共 50 条
[21]   Random Perturbations of Matrix Polynomials [J].
Pagacz, Patryk ;
Wojtylak, Michal .
JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) :52-88
[22]   Random Perturbations of Matrix Polynomials [J].
Patryk Pagacz ;
Michał Wojtylak .
Journal of Theoretical Probability, 2022, 35 :52-88
[23]   On the bounds of eigenvalues of matrix polynomials [J].
Shah, W. M. ;
Singh, Sooraj .
JOURNAL OF ANALYSIS, 2023, 31 (01) :821-829
[24]   NUMERICAL RANGE OF MATRIX POLYNOMIALS [J].
LI, CK ;
RODMAN, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) :1256-1265
[25]   On the bounds of eigenvalues of matrix polynomials [J].
W. M. Shah ;
Sooraj Singh .
The Journal of Analysis, 2023, 31 :821-829
[26]   ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS [J].
Cong-Trinh Le ;
Thi-Hoa-Binh Du ;
Tran-Duc Nguyen .
OPERATORS AND MATRICES, 2019, 13 (04) :937-954
[27]   Symmetry of the spatial numerical ranges of algebra polynomials and of matrix polynomials [J].
Chryssakis Th. .
Journal of Mathematical Sciences, 1999, 96 (6) :3716-3721
[28]   FAST AND BACKWARD STABLE COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF MATRIX POLYNOMIALS [J].
Aurentz, Jared ;
Mach, Thomas ;
Robol, Leonardo ;
Vandebril, Raf ;
Watkins, David S. .
MATHEMATICS OF COMPUTATION, 2019, 88 (315) :313-347
[29]   The numerical range of self-adjoint quadratic matrix polynomials [J].
Lancaster, P ;
Psarrakos, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) :615-631
[30]   On matrix integration of matrix polynomials [J].
Szafraniec, FH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :611-621