Stability of matrix polynomials in one and several variables

被引:0
作者
Szymanski, Oskar Jakub [1 ]
Wojtylak, Michal [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Matrix polynomial; Eigenvalue; Stability; Polarisation operator; Multivariate polynomial; NUMERICAL RANGE; EIGENVALUES; BOUNDS; ROOTS;
D O I
10.1016/j.laa.2023.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents methods for the eigenvalue localisation of regular matrix polynomials, in particular, the stability of matrix polynomials is investigated. For this aim a stronger notion of hyperstability is introduced and widely discussed. Matrix versions of the Gauss-Lucas theorem and Szasz inequality are shown. Further, tools for investigating (hyper) -stability by multivariate complex analysis methods are provid-ed. Several seconds-and third-order matrix polynomials with particular semi-definiteness assumptions on coefficients are shown to be stable.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 67
页数:26
相关论文
共 27 条
[1]  
Anguas L.M., ARXIV
[2]  
Betcke T., 2008, MIMS EPRINT 2008, V40
[3]   LOCATING THE EIGENVALUES OF MATRIX POLYNOMIALS [J].
Bini, Dario A. ;
Noferini, Vanni ;
Sharify, Meisam .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) :1708-1727
[4]   The Lee-Yang and Polya-Schur programs. I. Linear operators preserving stability [J].
Borcea, Julius ;
Branden, Petter .
INVENTIONES MATHEMATICAE, 2009, 177 (03) :541-569
[5]  
de Branges L, 1961, Trans. Amer. Math. Soc., V99, P118
[6]  
Gantmacher FR., 1959, THEORY MATRICES
[7]   A LINEAR RELATION APPROACH TO PORT-HAMILTONIAN DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
Gernandt, Hannes ;
Haller, Frederic Enrico ;
Reis, Timo .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (02) :1011-1044
[8]  
Golub GH., 2013, Matrix Computations, DOI [10.56021/9781421407944, DOI 10.56021/9781421407944]
[9]  
Grace JH, 1902, P CAMB PHILOS SOC, V11, P352
[10]   Bounds for eigenvalues of matrix polynomials [J].
Higham, NJ ;
Tisseur, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 :5-22