Cardiovascular diseases prediction by machine learning incorporation with deep learning

被引:35
作者
Subramani, Sivakannan [1 ]
Varshney, Neeraj [2 ]
Anand, M. Vijay [3 ]
Soudagar, Manzoore Elahi M. [4 ]
Al-keridis, Lamya Ahmed [5 ]
Upadhyay, Tarun Kumar [6 ,7 ]
Alshammari, Nawaf [8 ]
Saeed, Mohd [8 ]
Subramanian, Kumaran [9 ]
Anbarasu, Krishnan [10 ]
Rohini, Karunakaran [11 ,12 ,13 ]
机构
[1] St Josephs Univ, Dept Adv Comp, Bengaluru, Karnataka, India
[2] GLA Univ, Dept Comp Engn & Applicat, Mathura, Uttar Pradesh, India
[3] Kongu Engn Coll, Dept Mech Engn, Erode, Tamil Nadu, India
[4] SIMATS, Saveetha Sch Engn, Dept VLSI Microelect, Chennai, Tamil Nadu, India
[5] Princess Norah Mint Abdulrahman Univ, Fac Sci, Riyadh, Saudi Arabia
[6] Parul Univ, Parul Inst Appl Sci, Dept Biotechnol, Vadodara, India
[7] Parul Univ, Ctr Res Dev, Vadodara, India
[8] Univ Hail, Coll Sci, Dept Biol, Hail, Saudi Arabia
[9] Sathyabama Inst Sci & Technol, Ctr Drug Discovery & Dev, Chennai, Tamil Nadu, India
[10] SIMATS, Saveetha Sch Engn, Dept Bioinformat, Chennai, Tamil Nadu, India
[11] AIMST Univ, Fac Med, Ctr Excellence Biomat Engeneering, Unit Biochem, Bedong, Malaysia
[12] AIMST Univ, Ctr Excellence Biomat Sci, Bedong, Malaysia
[13] SIMATS, Saveetha Sch Engn, Dept Computat Biol, Chennai, Tamil Nadu, India
关键词
cardiovascular disease; AI-based technologies; internet of things; machine learning; computational method; MODEL;
D O I
10.3389/fmed.2023.1150933
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is yet unknown what causes cardiovascular disease (CVD), but we do know that it is associated with a high risk of death, as well as severe morbidity and disability. There is an urgent need for AI-based technologies that are able to promptly and reliably predict the future outcomes of individuals who have cardiovascular disease. The Internet of Things (IoT) is serving as a driving force behind the development of CVD prediction. In order to analyse and make predictions based on the data that IoT devices receive, machine learning (ML) is used. Traditional machine learning algorithms are unable to take differences in the data into account and have a low level of accuracy in their model predictions. This research presents a collection of machine learning models that can be used to address this problem. These models take into account the data observation mechanisms and training procedures of a number of different algorithms. In order to verify the efficacy of our strategy, we combined the Heart Dataset with other classification models. The proposed method provides nearly 96 percent of accuracy result than other existing methods and the complete analysis over several metrics has been analysed and provided. Research in the field of deep learning will benefit from additional data from a large number of medical institutions, which may be used for the development of artificial neural network structures.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Machine Learning-Based Hospital Discharge Prediction for Patients With Cardiovascular Diseases: Development and Usability Study [J].
Ahn, Imjin ;
Gwon, Hansle ;
Kang, Heejun ;
Kim, Yunha ;
Seo, Hyeram ;
Choi, Heejung ;
Cho, Ha Na ;
Kim, Minkyoung ;
Jun, Tae Joon ;
Kim, Young-Hak .
JMIR MEDICAL INFORMATICS, 2021, 9 (11)
[2]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[3]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[4]   Reviewing the use and quality of machine learning in developing clinical prediction models for cardiovascular disease [J].
Allan, Simon ;
Olaiya, Raphael ;
Burhan, Rasan .
POSTGRADUATE MEDICAL JOURNAL, 2022, 98 (1161) :551-558
[5]   A novel approach for cardiovascular disease prediction using machine learning algorithms [J].
Arunachalam, Saran Kumar ;
Rekha, Rajagopal .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19)
[6]   Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease [J].
Aryal, Sachin ;
Alimadadi, Ahmad ;
Manandhar, Ishan ;
Joe, Bina ;
Cheng, Xi .
HYPERTENSION, 2020, 76 (05) :1555-1562
[7]  
Brites Ivo S. G., 2022, Information Technology and Systems: Proceedings of ICITS 2022. Lecture Notes in Networks and Systems (414), P356, DOI 10.1007/978-3-030-96293-7_32
[8]   Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study [J].
Di Castelnuovo, Augusto ;
Bonaccio, Marialaura ;
Costanzo, Simona ;
Gialluisi, Alessandro ;
Antinori, Andrea ;
Berselli, Nausicaa ;
Blandi, Lorenzo ;
Bruno, Raffaele ;
Cauda, Roberto ;
Guaraldi, Giovanni ;
My, Ilaria ;
Menicanti, Lorenzo ;
Parruti, Giustino ;
Patti, Giuseppe ;
Perlini, Stefano ;
Santilli, Francesca ;
Signorelli, Carlo ;
Stefanini, Giulio G. ;
Vergori, Alessandra ;
Abdeddaim, Amina ;
Ageno, Walter ;
Agodi, Antonella ;
Agostoni, Piergiuseppe ;
Aiello, Luca ;
Al Moghazi, Samir ;
Aucella, Filippo ;
Barbieri, Greta ;
Bartoloni, Alessandro ;
Bologna, Carolina ;
Bonfanti, Paolo ;
Brancati, Serena ;
Cacciatore, Francesco ;
Caiano, Lucia ;
Cannata, Francesco ;
Carrozzi, Laura ;
Cascio, Antonio ;
Cingolani, Antonella ;
Cipollone, Francesco ;
Colomba, Claudia ;
Crisetti, Annalisa ;
Crosta, Francesca ;
Danzi, Gian B. ;
D'Ardes, Damiano ;
Donati, Katleen de Gaetano ;
Di Gennaro, Francesco ;
Di Palma, Gisella ;
Di Tano, Giuseppe ;
Fantoni, Massimo ;
Filippini, Tommaso ;
Fioretto, Paola .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2020, 30 (11) :1899-1913
[9]   Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk [J].
Dimopoulos, Alexandros C. ;
Nikolaidou, Mara ;
Felix Caballero, Francisco ;
Engchuan, Worrawat ;
Sanchez-Niubo, Albert ;
Arndt, Holger ;
Luis Ayuso-Mateos, Jose ;
Maria Haro, Josep ;
Chatterji, Somnath ;
Georgousopoulou, Ekavi N. ;
Pitsavos, Christos ;
Panagiotakos, Demosthenes B. .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
[10]  
Dinesh KG, 2018, P 2018 INT C CURRENT, P1, DOI DOI 10.1109/ICCTCT.2018.8550857