Flexural fatigue behavior of hybrid steel-polypropylene fiber reinforced high-strength lightweight aggregate concrete

被引:18
|
作者
Cui, Taotao [1 ]
Ning, Baokuan [1 ]
Shi, Xinxin [1 ]
Li, Jinyu [1 ]
机构
[1] Shenyang Univ Technol, Sch Architecture & Civil Engn, Shenyang 110870, Peoples R China
关键词
High strength lightweight aggregate concrete  (HSLC); Hybrid fiber (HF); Flexural fatigue behavior; Fatigue life; Crack propagation rate; SELF-COMPACTING CONCRETE; MECHANICAL-PROPERTIES; PERFORMANCE; MICROSTRUCTURE; PLAIN;
D O I
10.1016/j.conbuildmat.2023.131079
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Compared with ordinary concrete, high-strength lightweight aggregate concrete (HSLC) can remarkably atten-uate self-weight in engineering structures. However, the fatigue performance of ordinary concrete is better than that of HSLC. Herein, the flexural fatigue behavior, including fatigue life and crack propagation process, of hybrid fiber (HF) reinforced HSLC under different stress levels (S = 0.85, 0.80 and 0.75) was investigated. A further analysis on the fatigue life and crack propagation rate of HF reinforced HSLC was also conducted by two -parameter Weibull distribution (2PWD) and Paris law, respectively. The results indicated that the fatigue life of all specimens followed the 2PWD under various stress levels. Compared to the single fiber reinforced HSLC, the HF reinforced HSLC exhibited minimum crack propagation rates, the longest duration of stable development stage and fatigue life. The fatigue life equation was established with double logarithmic fatigue equation by considering failure probability. Furthermore, the expression of crack propagation rate with respect to crack length of each group of specimens was proposed under various stress levels.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experiment on crack resistance of steel-polypropylene hybrid fiber reinforced concrete
    Wu H.
    Pei Z.
    Yang X.
    1600, Huazhong University of Science and Technology (48): : 43 - 47
  • [22] Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete
    Song, PS
    Wu, JC
    Hwang, S
    Sheu, BC
    CONSTRUCTION AND BUILDING MATERIALS, 2005, 19 (01) : 1 - 9
  • [23] Hybrid Effects on Strength of Steel-polypropylene Hybrid Fiber Reinforced Concrete under Uniaxial and Triaxial Compression
    Mei, Guodong
    Xu, Lihua
    Li, Shu
    Chi, Yin
    MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 782 - +
  • [24] Monotonic and cyclic bond responses of steel bar with steel-polypropylene hybrid fiber reinforced recycled aggregate concrete
    Yan, Huanhuan
    Gao, Danying
    Guo, Aofei
    Gu, Zhiqiang
    Ji, Dongdong
    Zhang, Yu
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 327
  • [25] Experimental strength evaluation of steel-polypropylene hybrid fibre reinforced concrete
    Arokiaprakash, A.
    Selvan, S. Senthil
    JOURNAL OF ENGINEERING RESEARCH, 2022, 10
  • [26] Fatigue Strength of Hybrid Steel-Polypropylene Fibrous Concrete Beams in Flexure
    Singh, Surinder Pal
    PROCEEDINGS OF THE TWELFTH EAST ASIA-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION (EASEC12), 2011, 14
  • [27] Size effect on the flexural fatigue behavior of high-strength plain and fiber-reinforced concrete
    Mena-Alonso, Alvaro
    Gonzalez, Dorys C.
    Minguez, Jesus
    Vicente, Miguel A.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [28] Mechanical Properties and Microstructure of Fiber Reinforced High-Strength Lightweight Aggregate Concrete
    Liu X.
    Wu T.
    Yang X.
    Wei H.
    Li P.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (05): : 700 - 706and713
  • [29] Static Mechanical Properties and Impact Resistance of Steel Fiber Reinforced High-Strength Lightweight Aggregate Concrete
    Song Hongwei
    Wang Haitao
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 261-263 : 115 - +
  • [30] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287