Sum of powers of the Laplacian eigenvalues and the kirchhoff index of a graph

被引:0
作者
Hu, Mingying [1 ]
Chen, Haiyan [1 ]
Sun, Wenwen [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; Resistance distance; Kirchhoff index; First Zagreb index; Laplacian Estrada index; ENERGY-LIKE INVARIANT; RESISTANCE-DISTANCE; ESTRADA INDEX;
D O I
10.1016/j.amc.2023.127883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V = { 1 , 2 , . . . , n }. For any real number alpha, the topological index s(alpha)(G) of G is defined as s(alpha)(G) = Sigma(n-1) (i =1) mu(alpha) (i) , where mu(1) >= mu 2 >= . . . mu(n -1) >= mu(n) = 0 are the Laplacian eigenvalues of G . In this paper, we first express s alpha (G ) explicitly in terms of resistance distances Omega(ij), i, j is an element of V . Then we generalize the following well-known equality ns -1 (G ) = Kf(G) to any integer k >= -1 , where Kf(G) = Sigma(i<j) Omega(ij) is the Kirchhoff index of G . As by-products, we get the expressions for the first Zagreb index and the Laplacian Estrada index in terms of the resistance distances. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 24 条
  • [1] Resistance distance local rules
    Chen, Haiyan
    Zhang, Fuji
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (02) : 405 - 417
  • [2] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Chen Xiao-dan
    Qian Jian-guo
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (02) : 142 - 150
  • [3] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    [J]. DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [4] On sum of powers of the Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Xu, Kexiang
    Liu, Muhuo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3561 - 3575
  • [5] Deng HY, 2010, MATCH-COMMUN MATH CO, V63, P171
  • [6] Fath-Tabar G.H., 2009, B ACAD SERBE SCI ART, V139, P1
  • [7] Foster RM., 1949, REISSNER ANNIVERSARY, P333
  • [8] The quasi-Wiener and the Kirchhoff indices coincide
    Gutman, I
    Mohar, B
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1996, 36 (05): : 982 - 985
  • [9] GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS
    GUTMAN, I
    TRINAJSTIC, N
    [J]. CHEMICAL PHYSICS LETTERS, 1972, 17 (04) : 535 - 538
  • [10] RESISTANCE DISTANCE
    KLEIN, DJ
    RANDIC, M
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1993, 12 (1-4) : 81 - 95