Coupled-Cluster theory revisited Part II: Analysis of the single-reference Coupled-Cluster equations

被引:7
|
作者
Csirik, Mihaly A. [1 ]
Laestadius, Andre [1 ,2 ]
机构
[1] Univ Oslo, Hylleraas Ctr Quantum Mol Sci, Dept Chem, POB 1033, N-0315 Oslo, Norway
[2] Oslo Metropolitan Univ, Dept Comp Sci, POB 4,St Olavs plass, NO-0130 Oslo, Norway
关键词
Quantum mechanics; many-body problem; quantum chemistry; electronic structure; coupled-cluster theory; nonlinear analysis; topological degree; Brouwer degree; MATHEMATICAL CONTENT; EXISTENCE; ATOMS; OPERATOR; STATES;
D O I
10.1051/m2an/2022099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a series of two articles, we propose a comprehensive mathematical framework for Coupled-Cluster-type methods. In this second part, we analyze the nonlinear equations of the single-reference Coupled-Cluster method using topological degree theory. We establish existence results and qualitative information about the solutions of these equations that also sheds light of the numerically observed behavior. In particular, we compute the topological index of the zeros of the single-reference Coupled-Cluster mapping. For the truncated Coupled-Cluster method, we derive an energy error bound for approximate eigenstates of the Schrodinger equation.
引用
收藏
页码:545 / 583
页数:39
相关论文
共 50 条
  • [1] Coupled-Cluster theory revisited Part I: Discretization
    Csirik, Mihaly A.
    Laestadius, Andre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (02) : 645 - 670
  • [2] Transition metal atomic multiplet states through the lens of single-reference coupled-cluster and the equation-of-motion coupled-cluster methods
    Rishi, Varun
    Perera, Ajith
    Bartlett, Rodney
    THEORETICAL CHEMISTRY ACCOUNTS, 2014, 133 (08) : 1 - 10
  • [3] Coupled-cluster theory for nuclei
    Papenbrock, T.
    Dean, D. J.
    Gour, J. R.
    Hagen, G.
    Hjorth-Jensen, M.
    Piecuch, P.
    Wloch, M.
    RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 385 - +
  • [4] Relativistic coupled-cluster and equation-of-motion coupled-cluster methods
    Liu, Junzi
    Cheng, Lan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (06)
  • [5] Polaritonic coupled-cluster theory
    Mordovina, Uliana
    Bungey, Callum
    Appel, Heiko
    Knowles, Peter J.
    Rubio, Angel
    Manby, Frederick R.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [6] Coupled-cluster theory for nuclei
    Papenbrock, T.
    Dean, D. J.
    Gour, J. R.
    Hagen, G.
    Hjorth-Jensen, M.
    Piecuch, P.
    Wloch, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5338 - 5345
  • [7] Different approaches to the coupled-cluster method and related ways of solving the coupled-cluster equations
    Meissner, Leszek
    MOLECULAR PHYSICS, 2017, 115 (21-22) : 2629 - 2636
  • [8] S-Diagnostic-An a Posteriori Error Assessment for Single-Reference Coupled-Cluster Methods
    Faulstich, Fabian M.
    Kristiansen, Hakon E.
    Csirik, Mihaly A.
    Kvaal, Simen
    Pedersen, Thomas Bondo
    Laestadius, Andre
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (43) : 9106 - 9120
  • [9] Coupled-cluster theory and the method of moments
    Rolik, Z.
    Szabados, A.
    Kohalmi, D.
    Surjan, P. R.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 768 (1-3): : 17 - 23
  • [10] Quasiparticle Fock-space coupled-cluster theory
    Stolarczyk, Leszek Z.
    Monkhorst, Hendrik J.
    MOLECULAR PHYSICS, 2010, 108 (21-23) : 3067 - 3089