A New (De)Intercalation MXene/Bi Cathode for Ultrastable Aqueous Zinc-Ion Battery

被引:20
|
作者
Wang, Qiang [1 ,2 ]
Wang, Mengjie [1 ]
Wen, Li [3 ,4 ]
Zeng, Wei [1 ,2 ]
Ge, Binghui [1 ]
Zhang, Chaofeng [1 ]
Yue, Yang [1 ]
Wang, Siliang [1 ,2 ]
机构
[1] Anhui Univ, Inst Phys Sci & Informat Technol, Informat Mat & Intelligent Sensing Lab Anhui Prov, Key Lab Struct & Funct Regulat Hybrid Mat,Minist, Hefei 230601, Peoples R China
[2] Anhui Univ, Ind Educ Res Inst Adv Mat & Technol Integrated Cir, Hefei 230601, Peoples R China
[3] Huazhong Univ Sci & Technol HUST, Ctr Nanoscale Characterizat & Devices CNCD, Sch Phys, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
(de)intercalation; long lifespan; MXene; Bi; pressure sensors; zinc-ion batteries; PERFORMANCE; LIFE;
D O I
10.1002/adfm.202214506
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging aqueous zinc-ion batteries (ZIBs) have received extensive attention and research due to their unique advantages of low cost, safety, and environmental friendliness. However, the development of appropriate cathode materials to improve battery performance remains a major challenge. Herein, a new MXene and Bi (MXene/Bi) composite material is first applied as the (de)intercalation cathode of ZIB. The dispersed MXene nanosheets in the composite materials greatly improve the conductivity and hydrophilicity of the electrode, and prevent the stacking and the volume expansion in the charge/discharge process of 2D Bi fragments. The experimental results show that composite MXene/Bi electrode has remarkable capacity and ultralong life. Next, the good kinetics and (de)intercalation energy storage mechanism of ZIB are revealed through abundant electrochemical tests and ex situ characterization. The quasi-solid-state (QSS) ZIB is also constructed, showing superior electrochemical performance, flexibility, pressure resistance, and heat resistance. Besides, the QSS ZIB can be used directly as a self-powered pressure sensor to monitor the external pressure in real time based on the response current. This study not only demonstrates that MXene/Bi is a potential cathode for ZIBs, but also offers a feasible path to explore and design the next generation of high-performance multifunctional ZIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Advances in aqueous zinc-ion battery systems: Cathode materials and chemistry
    Fan, Yulong
    Wang, Qingping
    Xie, Yingying
    Zhou, Naigen
    Yang, Yang
    Ding, Yichun
    Wei, Yen
    Qu, Guoxing
    PROGRESS IN MATERIALS SCIENCE, 2025, 149
  • [12] Reversible aqueous zinc-ion battery based on ferric vanadate cathode
    Yang, Wang
    Yang, Wu
    Huang, Yongfeng
    Xu, Chengjun
    Dong, Liubing
    Peng, Xinwen
    CHINESE CHEMICAL LETTERS, 2022, 33 (10) : 4628 - 4634
  • [13] Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
    Liu, Chaofeng
    Tian, Meng
    Wang, Mingshan
    Zheng, Jiqi
    Wang, Shuhua
    Yan, Mengyu
    Wang, Zhaojie
    Yin, Zhengmao
    Yang, Jihui
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7713 - 7723
  • [14] Layered manganese dioxide nanoflowers with Cu2+and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery
    Long, Fengni
    Xiang, Yanhong
    Yang, Sinian
    Li, Yuting
    Du, Hongxia
    Liu, Yuqiu
    Wu, Xianwen
    Wu, Xiangsi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 616 : 101 - 109
  • [15] Cu2+ intercalation bolstering the rate capability of δ-MnO2 cathode for aqueous zinc-ion battery
    Li, Kun
    Liang, Yongxin
    Wu, Jingfeng
    Guo, Xu
    Wang, Guiting
    Zhang, Zhi
    Guo, Chenfeng
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [16] Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Song, Jinju
    Kim, Sungjin
    Islam, Saiful
    Pham, Duong Tung
    Jo, Jeonggeun
    Kim, Seokhun
    Baboo, Joseph Paul
    Xiu, Zhiliang
    Lee, Kug-Seung
    Sun, Yang-Kook
    Kim, Jaekook
    CHEMISTRY OF MATERIALS, 2017, 29 (04) : 1684 - 1694
  • [17] Promising zinc-ion battery cathode created
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (35) : 13 - 13
  • [18] Origin of electrochemical activation on vanadium hexacyanoferrate cathode for aqueous zinc-ion battery
    Kokits, Olga
    Aniskevich, Yauhen
    Mazanik, Alexander
    Yakimenko, Oleg
    Ragoisha, Genady
    Myung, Seung-Taek
    Streltsov, Eugene
    ENERGY STORAGE MATERIALS, 2023, 63
  • [19] Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zinc-ion Battery
    Zhao, Ling
    Dong, Liubing
    Liu, Wenbao
    Xu, Chengjun
    CHEMISTRYSELECT, 2018, 3 (44): : 12661 - 12665
  • [20] A Hyperstable Aqueous Zinc-Ion Battery Based on Mo1.74CTz MXene
    Chen, Ningjun
    Ronchi, Rodrigo
    Halim, Joseph
    Persson, Per O. a.
    Qin, Leiqiang
    Rosen, Johanna
    SMALL, 2025,