Fluorescence by self-assembly: autofluorescent peptide vesicles and fibers

被引:3
|
作者
Sapra, Rachit [1 ]
Gupta, Monika [1 ]
Khare, Kedar [2 ]
Chowdhury, Pramit K. [1 ]
Haridas, V. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Opt & Photon Ctr, New Delhi 110016, India
关键词
CHEMISTRY; INSIGHTS; GROWTH;
D O I
10.1039/d3an00124e
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A series of oxidized cysteinyl peptides ([P-Cys-X-OMe](2); P = Boc or H; X = Trp or Glu) showed vesicular and fibrillar assemblies. The anatomy of the self-assembled vesicles from the water-soluble cystine peptide [Cys-Trp-OMe](2) (1a) has been investigated by using various fluorescent probes such as ammonium 8-anilinonaphthalene-1-sulfonate, Nile Red and pyrene. The morphological characterization was carried out by fluorescence lifetime imaging microscopy (FLIM) and super resolution-structured illumination microscopy (SR-SIM) utilizing the autofluorescence of the vesicles stemming from the self-assembly. The self-assembled structures are also observed in solution as evident from the quantitative phase images obtained using a dual-mode digital holographic microscope (DHM) system. Present investigations show that the self-assembly is enthalpy- and entropy-driven in the aqueous medium. Based on the CD spectral studies, we proposed that 1a organizes into vesicles through the sequestration of indole units. We observed that the solutions of dipeptides 1a-b exhibit autofluorescence in the blue region upon excitation at a wavelength > 350 nm. Detailed spectroscopic studies on the peptides lacking tryptophan 2a-b unequivocally showed that the autofluorescence stems exclusively from peptide aggregation. Our experimental results with appropriate controls revealed that the clustering of carbonyl chromophores is central to autofluorescence. Autofluorescence was also used to probe the vesicle formation without using any external fluorescent probe. To the best of our knowledge, this is the first report on autofluorescent vesicles formed by the spontaneous association of dipeptides. We also found that the vesicles formed by 1a can act as a host for guests like C-60. The biocompatibility and biodegradability of these peptides along with the autofluorescent nature and guest binding ability of peptide-based vesicles offer numerous applications in the biomedical area.
引用
收藏
页码:973 / 984
页数:13
相关论文
共 50 条
  • [31] Recent development of peptide self-assembly
    Zhao, Xiubo
    Pan, Fang
    Lu, Jian R.
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (06) : 653 - 660
  • [32] PEPTIDE SELF-ASSEMBLY AND MICROSTRUCTURE FORMATION
    Moretto, A.
    JOURNAL OF PEPTIDE SCIENCE, 2014, 20 : S78 - S79
  • [33] Self-assembly of Peptide Amphiphiles and Their Applications
    Wang Jianxun
    Qin Siyong
    Cai Tengteng
    Zhang Xianzheng
    Zhuo Renxi
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (02): : 201 - 211
  • [34] Self-assembly of peptide based nanotubes
    Buriak, Jillian M.
    Reza Ghadiri, M.
    Materials Science and Engineering C, 1997, 4 (04): : 207 - 212
  • [35] Peptide and Protein Self-Assembly and Interactions
    Lampel, Ayala
    Reches, Meital
    ISRAEL JOURNAL OF CHEMISTRY, 2022, 62 (9-10)
  • [36] Self-Assembly and Hydrogelation of Peptide Amphiphiles
    Irwansyah
    Sihombing, Riwandi
    Suwarso, Wahyudi Priyono
    MAKARA JOURNAL OF SCIENCE, 2012, 16 (01) : 51 - 57
  • [37] Self-Assembly of a Dentinogenic Peptide Hydrogel
    Nguyen, Peter K.
    Gao, William
    Patel, Saloni D.
    Siddiqui, Zain
    Weiner, Saul
    Shimizu, Emi
    Sarkar, Biplab
    Kumar, Vivek A.
    ACS OMEGA, 2018, 3 (06): : 5980 - 5987
  • [38] Effects of nanobubbles on peptide self-assembly
    Wang, Yujiao
    Shen, Zhiwei
    Guo, Zhen
    Hu, Jun
    Zhang, Yi
    NANOSCALE, 2018, 10 (42) : 20007 - 20012
  • [39] Polymorphismin peptide self-assembly visualized
    Tirrell, Matthew
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (06)
  • [40] Recent development of peptide self-assembly
    Xiubo Zhao
    Progress in Natural Science, 2008, (06) : 653 - 660