Fabrication of suspended graphene field-effect transistors by the sandwich method

被引:4
作者
Shin, Hyunsuk [1 ]
Lee, Sungbae [2 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea
[2] Korea Inst Energy Technol KENTECH, Sch Energy Engn, Naju 58330, South Korea
关键词
TRANSPORT;
D O I
10.1016/j.cap.2023.01.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel fabrication technique that can be used for making a series of suspended graphene field-effect transistors on Si-substrate is discussed. The electrical properties of graphene channel can be significantly degraded by defects and chemical residues between graphene and substrate. To minimize electrical degradation, a method of physically suspending graphene from the substrate has been considered while maintaining its structural integrity. To address this problem, we employed a sandwich method to fabricate a suspended GFET, realizing 76% device fabrication yield that is higher than those realized by the other methods. Furthermore, the degradation of electrical properties due to external factors decreased. As our method has a mechanically stable structure, it can be imposed to make electrical devices with various two-dimensional (2D) materials. Our method can also be applied to the engineering of future devices in various applications because a large amount of electrically clean samples can be manufactured at once.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 21 条
  • [1] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [2] Mobility and saturation velocity in graphene on SiO2
    Dorgan, Vincent E.
    Bae, Myung-Ho
    Pop, Eric
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (08)
  • [3] Approaching ballistic transport in suspended graphene
    Du, Xu
    Skachko, Ivan
    Barker, Anthony
    Andrei, Eva Y.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (08) : 491 - 495
  • [4] Geim A.K., 2010, NANOSCIENCE TECHNOLO, P11
  • [5] Kim YD, 2015, NAT NANOTECHNOL, V10, P676, DOI [10.1038/NNANO.2015.118, 10.1038/nnano.2015.118]
  • [6] Observation of electron-hole puddles in graphene using a scanning single-electron transistor
    Martin, J.
    Akerman, N.
    Ulbricht, G.
    Lohmann, T.
    Smet, J. H.
    Von Klitzing, K.
    Yacoby, A.
    [J]. NATURE PHYSICS, 2008, 4 (02) : 144 - 148
  • [7] Weak-localization magnetoresistance and valley symmetry in graphene
    McCann, E.
    Kechedzhi, K.
    Fal'ko, Vladimir I.
    Suzuura, H.
    Ando, T.
    Altshuler, B. L.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (14)
  • [8] Room-temperature quantum hall effect in graphene
    Novoselov, K. S.
    Jiang, Z.
    Zhang, Y.
    Morozov, S. V.
    Stormer, H. L.
    Zeitler, U.
    Maan, J. C.
    Boebinger, G. S.
    Kim, P.
    Geim, A. K.
    [J]. SCIENCE, 2007, 315 (5817) : 1379 - 1379
  • [9] A roadmap for graphene
    Novoselov, K. S.
    Fal'ko, V. I.
    Colombo, L.
    Gellert, P. R.
    Schwab, M. G.
    Kim, K.
    [J]. NATURE, 2012, 490 (7419) : 192 - 200
  • [10] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669