Influence of Al Addition on the Microstructure and Wear Behavior of Laser Cladding FeCoCrNiAlx High-Entropy Alloy Coatings

被引:7
|
作者
Liu, Yang [1 ,2 ]
Xu, Zhixiang [2 ]
Xu, Gaojie [1 ]
Chen, Hongyong [3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Ningbo Univ, Fac Mech Engn & Mech, Ningbo 315211, Peoples R China
[3] Ningbo Inst Zhongwu Laser & Photoelect Technol, Ningbo 315000, Peoples R China
关键词
laser cladding; FeCoCrNiAlx; high entropy alloy coating; wear properties; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; EVOLUTION;
D O I
10.3390/coatings13020426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to improve the wear properties of FeCoCrNi high entropy alloy (HEA), laser cladding was applied to fabricate FeCoCrNiAlx HEA coatings with different Al additions. The Al-modified coatings exhibited excellent metallurgical bonding interfaces with the substrates. The microstructure of FeCoCrNiAl0.5 coating was the same as of the FeCoCrNi coating: face-centered cubic (FCC). However, the microstructure of FeCoCrNiAl was different: body-centered cubic (BCC) with more Al atoms distributed inside the grains. As the Al content in the coating was increased, the hardness increased as well from 202 to 546 HV0.2, while CoF and wear rate decreased from 0.62 to 0.1 and from 8.55 x 10(-7) to 8.24 x 10(-9) mm(3)/(Nm), respectively. The wear mechanisms changed from the mixture of abrasive, adhesive, and oxidative wear patterns to the mixture of abrasive and oxidative patterns. Such a change indicates that the Al addition indeed improved the wear resistance of FeCoCrNiAlx HEA coatings. Our results expand knowledge on HEA coating applications as wear-resistant materials in various applied industrial fields.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding
    Liu, Hao
    Sun, Shifeng
    Zhang, Tong
    Zhang, Guozhong
    Yang, Haifeng
    Hao, Jingbin
    SURFACE & COATINGS TECHNOLOGY, 2021, 405
  • [2] Influence of Mo on the Microstructure and Corrosion Behavior of Laser Cladding FeCoCrNi High-Entropy Alloy Coatings
    Li, Wenjuan
    Guo, Wenmin
    Zhang, Hongling
    Xu, Huanhuan
    Chen, Liang
    Zeng, Junshan
    Liu, Bin
    Ding, Zhibing
    ENTROPY, 2022, 24 (04)
  • [3] Effect of Ti addition on the microstructure and corrosion behavior of laser cladding AlCoCrFeNi high-entropy alloy coatings
    Yue, Kun
    Wang, Lin
    Xu, Zhe
    Cheng, Chunlong
    Wang, Yeqing
    Fan, Yu
    Xu, Jie
    Wang, Zhijun
    Chen, Zheng
    VACUUM, 2024, 230
  • [4] Microstructure and high-temperature wear behavior of CoCrFeNiWx high-entropy alloy coatings fabricated by laser cladding
    Liu, Hao
    Gao, Qiang
    Dai, Jianbo
    Chen, Peijian
    Gao, Wenpeng
    Hao, Jingbin
    Yang, Haifeng
    TRIBOLOGY INTERNATIONAL, 2022, 172
  • [5] Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings
    Zhang, Hongling
    Li, Wenjuan
    Xu, Huanhuan
    Chen, Liang
    Zeng, Junshan
    Ding, Zhibing
    Guo, Wenmin
    Liu, Bin
    COATINGS, 2022, 12 (05)
  • [6] Review on wear resistance of laser cladding high-entropy alloy coatings
    Xiang, Dingding
    Liu, Yusheng
    Yu, Tianbiao
    Wang, Di
    Leng, Xiaoxin
    Wang, Kaiming
    Liu, Lin
    Pan, Jie
    Yao, Sun
    Chen, Zibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 911 - 934
  • [7] Influence of WC addition on the microstructure and properties of AlCoCrFeNiCu high-entropy alloy coatings by plasma cladding
    Xie, Yujiang
    Qi, Junjie
    Zhao, Ming
    Jiang, Wenyu
    Wen, Xiong
    Huang, Bensheng
    Zhuang, Jia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1021
  • [8] Microstructure evolution and frictional wear behavior of laser cladding FeCrCoNiMo0.5Wx high-entropy alloy coatings
    Duan, Xunan
    Wang, Shouren
    Wang, Gaoqi
    Gao, Shaoping
    Wang, Lihu
    Yang, Xuefeng
    INTERMETALLICS, 2023, 158
  • [9] Microstructure and wear resistance of AlCoCrFeNiCuSnX high-entropy alloy coatings by plasma cladding
    Xie, Yujiang
    Wen, Xiong
    Yan, Jikang
    Huang, Bensheng
    Zhuang, Jia
    VACUUM, 2023, 214
  • [10] Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding
    Zhao X.
    Cui H.
    Jiang D.
    Song X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6311 - 6323