Analysis and numerical simulation of a reaction-diffusion mathematical model of atherosclerosis

被引:0
作者
Mukherjee, Debasmita [1 ]
Mukherjee, Avishek [2 ]
机构
[1] SVKMs NMIMS Deemed Univ, Nilkamal Sch Math, Appl Stat & Analyt, Mumbai, India
[2] Tata Consultancy Serv, Kolkata, India
关键词
Atherosclerosis; Reaction-diffusion system; Global stability; Hopf bifurcation;
D O I
10.1007/s40808-022-01664-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atherosclerosis is a chronic inflammatory disease which occurs due to plaque accumulation in the intima, the innermost layer of the artery. In this paper, a simple reaction-diffusion mathematical model of the plaque formation process comprising of oxidized LDL and macrophages has been developed. Linear stability analysis of the non-spatial model leads to the existence of global stability of the kinetic system. This reveals that the non-spatial system can withstand a substantial change in the significant model parameter values which can be taken forward for further clinical investigations. Numerical bifurcation analysis of the non-spatial system confirms the existence of Hopf bifurcation with respect to two significant model parameters. The biological importance of these bifurcation diagrams is discussed in detail. The significance of the model presented in this research paper provides a clear insight into the role of the key constituents, oxidized LDL and macrophages, involved in the plaque-forming process.
引用
收藏
页码:3517 / 3526
页数:10
相关论文
共 24 条
[1]   A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation [J].
Alimohammadi, Mona ;
Pichardo-Almarza, Cesar ;
Agu, Obiekezie ;
Diaz-Zuccarini, Vanessa .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2017, 231 (05) :378-390
[2]   Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior [J].
Anlamlert, Wanwarat ;
Lenbury, Yongwimon ;
Bell, Jonathan .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[3]   Long time evolution of atherosclerotic plaques [J].
Bulelzai, M. A. K. ;
Dubbeldam, Johan L. A. .
JOURNAL OF THEORETICAL BIOLOGY, 2012, 297 :1-10
[4]  
Calvez Vincent, 2009, ESAIM Proceedings, V28, P1, DOI 10.1051/proc/2009036
[5]   Bifurcation and dynamics in a mathematical model of early atherosclerosis [J].
Chalmers, Alexander D. ;
Cohen, Anna ;
Bursill, Christina A. ;
Myerscough, Mary R. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (6-7) :1451-1480
[6]   Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach [J].
Cobbold, CA ;
Sherratt, JA ;
Maxwell, SRJ .
BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (01) :65-95
[7]   Athero-protective Effects of High Density Lipoproteins (HDL): An ODE Model of the Early Stages of Atherosclerosis [J].
Cohen, Anna ;
Myerscough, Mary R. ;
Thompson, Rosemary S. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (05) :1117-1142
[8]   Pathogenesis of atherosclerosis [J].
Falk, E .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2006, 47 (08) :C7-C12
[9]   A Mathematical Model of Atherosclerosis with Reverse Cholesterol Transport and Associated Risk Factors [J].
Friedman, Avner ;
Hao, Wenrui .
BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (05) :758-781
[10]   Strain distribution over plaques in human coronary arteries relates to shear stress [J].
Gijsen, Frank J. H. ;
Wentzel, Jolanda J. ;
Thury, Attila ;
Mastik, Frits ;
Schaar, Johannes A. ;
Schuurbiers, Johan C. H. ;
Slager, Cornelis J. ;
van der Giessen, Wim J. ;
de Feyter, Pim J. ;
van der Steen, Anton F. W. ;
Serruys, Patrick W. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 295 (04) :H1608-H1614