Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?

被引:10
作者
Boussona, Valerie [1 ,2 ]
Benoista, Nicolas [1 ,2 ]
Guetata, Pierre [1 ,2 ]
Attane, Gregoire [1 ,2 ]
Salvatc, Cecile [3 ]
Perronnea, Laetitia [1 ,2 ]
机构
[1] Nord Univ Paris Cite, Hop Lariboisiere, AP HP, Serv Radiol Osteoarticulaire, F-75010 Paris, France
[2] CNRS, UMR 7052, Lab B3OA, Paris, France
[3] Nord Univ Paris Cite, Hop Lariboisiere, AP HP, Dept Med Phys, Paris, France
关键词
Artificial intelligence; Deep learning; Medical imaging; Musculoskeletal imaging; Fracture; MAGNETIC-RESONANCE IMAGES; NEURAL-NETWORK; LUMBAR SPINE; DEEP; BONE; SEGMENTATION; CLASSIFICATION; RADIOLOGYS; TUMORS; MODEL;
D O I
10.1016/j.jbspin.2022.105493
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The interest of researchers, clinicians and radiologists, in artificial intelligence (AI) continues to grow. Deep learning is a subset of machine learning, in which the computer algorithm itself can determine the optimal imaging features to answer a clinical question. Convolutional neural networks are the most common architecture for performing deep learning on medical images. The various musculoskeletal applications of deep learning are the detection of abnormalities on X-rays or cross-sectional images (CT, MRI), for example the detection of fractures, meniscal tears, anterior cruciate ligament tears, degenerative lesions of the spine, bone metastases, classification of e.g., dural sac stenosis, degeneration of intervertebral discs, assessment of skeletal age, and segmentation, for example of cartilage. Software developments are already impacting the daily practice of orthopedic imaging by automatically detecting fractures on radiographs. Improving image acquisition protocols, improving the quality of low-dose CT images, reducing acquisition times in MRI, or improving MR image resolution is possible through deep learning. Deep learning offers an automated way to offload time-consuming manual processes and improve practitioner performance. This article reviews the current state of AI in musculoskeletal imaging. (c) 2022 Societe franc, aise de rhumatologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Aging, the Medical Subspecialties, and Career Development: Where We Were, Where We Are Going [J].
Hurria, Arti ;
High, Kevin P. ;
Mody, Lona ;
Horne, Frances McFarland ;
Escobedo, Marcus ;
Halter, Jeffrey ;
Hazzard, William ;
Schmader, Kenneth ;
Klepin, Heidi ;
Lee, Sei ;
Makris, Una E. ;
Rich, Michael W. ;
Rogers, Stephanie ;
Wiggins, Jocelyn ;
Watman, Rachael ;
Choi, Jennifer ;
Lundebjerg, Nancy ;
Zieman, Susan .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2017, 65 (04) :680-687
[42]   Artificial intelligence-aided ultrasound imaging in hepatopancreatobiliary surgery: where are we now? [J].
Bektas, Mustafa ;
Chia, Catherine M. ;
Burchell, George L. ;
Daams, Freek ;
Bonjer, H. Jaap ;
van der Peet, Donald L. .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2024, 38 (09) :4869-4879
[43]   Short-term traffic forecasting: Where we are and where we're going [J].
Vlahogianni, Eleni I. ;
Karlaftis, Matthew G. ;
Golias, John C. .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2014, 43 :3-19
[44]   Artificial Intelligence in Magnetic Resonance Imaging-based Prostate Cancer Diagnosis: Where Do We Stand in 2021 [J].
Suarez-Ibarrola, Rodrigo ;
Sigle, August ;
Eklund, Martin ;
Eberli, Daniel ;
Miernik, Arkadiusz ;
Benndorf, Matthias ;
Bamberg, Fabian ;
Gratzke, Christian .
EUROPEAN UROLOGY FOCUS, 2022, 8 (02) :409-417
[45]   Artificial intelligence in plastic surgery, where do we stand? [J].
Kiwan, Omar ;
Al-Kalbani, Mohammed ;
Rafie, Arash ;
Hijazi, Yasser .
JPRAS OPEN, 2024, 42 :234-243
[46]   Radiomics based on artificial intelligence in liver diseases: where are we? [J].
Hu, Wenmo ;
Yang, Huayu ;
Xu, Haifeng ;
Mao, Yilei .
GASTROENTEROLOGY REPORT, 2020, 8 (02) :90-97
[47]   Artificial intelligence in orthodontics: Where are we now? A scoping review [J].
Monill-Gonzalez, Anna ;
Rovira-Calatayud, Laia ;
d'Oliveira, Nuno Gustavo ;
Ustrell-Torrent, Josep M. .
ORTHODONTICS & CRANIOFACIAL RESEARCH, 2021, 24 :6-15
[48]   People of the 21st century: Where we came from - Who we are - Where we are going [J].
Oles, Piotr K. ;
Bartnicka-Michalska, Aneta .
CURRENT ISSUES IN PERSONALITY PSYCHOLOGY, 2022, 10 (01) :1-9
[49]   Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications [J].
D'Angelo, Tommaso ;
Caudo, Danilo ;
Blandino, Alfredo ;
Albrecht, Moritz H. ;
Vogl, Thomas J. ;
Gruenewald, Leon D. ;
Gaeta, Michele ;
Yel, Ibrahim ;
Koch, Vitali ;
Martin, Simon S. ;
Lenga, Lukas ;
Muscogiuri, Giuseppe ;
Sironi, Sandro ;
Mazziotti, Silvio ;
Booz, Christian .
JOURNAL OF CLINICAL ULTRASOUND, 2022, 50 (09) :1414-1431
[50]   Artificial intelligence and MRI in sinonasal tumors discrimination: where do we stand? [J].
Gravante, Giacomo ;
Arosio, Alberto Daniele ;
Curti, Nico ;
Biondi, Riccardo ;
Berardi, Luigi ;
Gandolfi, Alberto ;
Turri-Zanoni, Mario ;
Castelnuovo, Paolo ;
Remondini, Daniel ;
Bignami, Maurizio .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) :1557-1566