Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?

被引:10
作者
Boussona, Valerie [1 ,2 ]
Benoista, Nicolas [1 ,2 ]
Guetata, Pierre [1 ,2 ]
Attane, Gregoire [1 ,2 ]
Salvatc, Cecile [3 ]
Perronnea, Laetitia [1 ,2 ]
机构
[1] Nord Univ Paris Cite, Hop Lariboisiere, AP HP, Serv Radiol Osteoarticulaire, F-75010 Paris, France
[2] CNRS, UMR 7052, Lab B3OA, Paris, France
[3] Nord Univ Paris Cite, Hop Lariboisiere, AP HP, Dept Med Phys, Paris, France
关键词
Artificial intelligence; Deep learning; Medical imaging; Musculoskeletal imaging; Fracture; MAGNETIC-RESONANCE IMAGES; NEURAL-NETWORK; LUMBAR SPINE; DEEP; BONE; SEGMENTATION; CLASSIFICATION; RADIOLOGYS; TUMORS; MODEL;
D O I
10.1016/j.jbspin.2022.105493
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The interest of researchers, clinicians and radiologists, in artificial intelligence (AI) continues to grow. Deep learning is a subset of machine learning, in which the computer algorithm itself can determine the optimal imaging features to answer a clinical question. Convolutional neural networks are the most common architecture for performing deep learning on medical images. The various musculoskeletal applications of deep learning are the detection of abnormalities on X-rays or cross-sectional images (CT, MRI), for example the detection of fractures, meniscal tears, anterior cruciate ligament tears, degenerative lesions of the spine, bone metastases, classification of e.g., dural sac stenosis, degeneration of intervertebral discs, assessment of skeletal age, and segmentation, for example of cartilage. Software developments are already impacting the daily practice of orthopedic imaging by automatically detecting fractures on radiographs. Improving image acquisition protocols, improving the quality of low-dose CT images, reducing acquisition times in MRI, or improving MR image resolution is possible through deep learning. Deep learning offers an automated way to offload time-consuming manual processes and improve practitioner performance. This article reviews the current state of AI in musculoskeletal imaging. (c) 2022 Societe franc, aise de rhumatologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Artificial intelligence in gastroenterology: where are we heading?
    Joseph JY Sung
    Nicholas CH Poon
    Frontiers of Medicine, 2020, 14 : 511 - 517
  • [22] Artificial intelligence in health: where are we in 2022?
    Basaez, Esteban
    Mora, Javier
    REVISTA MEDICA CLINICA LAS CONDES, 2022, 33 (06): : 556 - 561
  • [23] Artificial Intelligence in Corneal Diagnosis: Where Are we?
    Bernardo T. Lopes
    Ashkan Eliasy
    Renato Ambrosio
    Current Ophthalmology Reports, 2019, 7 : 204 - 211
  • [24] Artificial Intelligence in Corneal Diagnosis: Where Are we?
    Lopes, Bernardo T.
    Eliasy, Ashkan
    Ambrosio Jr, Renato
    CURRENT OPHTHALMOLOGY REPORTS, 2019, 7 (03) : 204 - 211
  • [25] Artificial intelligence in gastroenterology: where are we heading?
    Sung, Joseph J. Y.
    Poon, Nicholas C. H.
    FRONTIERS OF MEDICINE, 2020, 14 (04) : 511 - 517
  • [26] Artificial intelligence and pediatric surgery: where are we?
    Miyake, Yuichiro
    Retrosi, Giuseppe
    Keijzer, Richard
    PEDIATRIC SURGERY INTERNATIONAL, 2024, 41 (01)
  • [27] Application of Machine Learning in Pulmonary Function Assessment Where Are We Now and Where Are We Going?
    Giri, Paresh C.
    Chowdhury, Anand M.
    Bedoya, Armando
    Chen, Hengji
    Lee, Hyun Suk
    Lee, Patty
    Henriquez, Craig
    MacIntyre, Neil R.
    Huang, Yuh-Chin T.
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [28] Computational methods applied to syphilis: where are we, and where are we going?
    Albuquerque, Gabriela
    Fernandes, Felipe
    Barbalho, Ingridy M. P.
    Barros, Daniele M. S.
    Morais, Philippi S. G.
    Morais, Antonio H. F.
    Santos, Marquiony M.
    Galvao-Lima, Leonardo J.
    Sales-Moioli, Ana Isabela L.
    Santos, Joao Paulo Q.
    Gil, Paulo
    Henriques, Jorge
    Teixeira, Cesar
    Lima, Thaisa Santos
    Coutinho, Karilany D.
    Pinto, Talita K. B.
    Valentim, Ricardo A. M.
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [29] Neurodevelopmental Disorders: Where we are today and where we're going
    Lopez, Isabel
    Forster, Jorge
    REVISTA MEDICA CLINICA LAS CONDES, 2022, 33 (04): : 367 - 378
  • [30] Recent Applications of Artificial Intelligence in Radiotherapy: Where We Are and Beyond
    Santoro, Miriam
    Strolin, Silvia
    Paolani, Giulia
    Della Gala, Giuseppe
    Bartoloni, Alessandro
    Giacometti, Cinzia
    Ammendolia, Ilario
    Morganti, Alessio Giuseppe
    Strigari, Lidia
    APPLIED SCIENCES-BASEL, 2022, 12 (07):