A functional central limit theorem on non-stationary random fields with nested spatial structure

被引:0
作者
Xu, Leshun [1 ,2 ]
Lee, Alan [1 ]
Lumley, Thomas [1 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Functional central limit theorem; Strongly-mixing coefficient; Nested sampling method; Random fields; INVARIANCE-PRINCIPLE;
D O I
10.1007/s11203-022-09273-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish a functional central limit theorem on high dimensional random fields in the context of model-based survey analysis. For strongly-mixing non-stationary random fields, we provide an upper bound for the fourth moment of the finite population total. This inequality is the generalization of a key tool for proving functional central limit theorems in Rio (Asymptotic theory of weakly dependent random processes, Springer, Berlin, 2017). Under the nested sampling strategy, we introduce assumptions on strongly-mixing coefficients and quantile functions to show that a functional stochastic process asymptotically approaches to a Gaussian process.
引用
收藏
页码:215 / 234
页数:20
相关论文
共 29 条
[1]  
Adler RJ, 2010, CLASS APPL MATH, V62, P1, DOI 10.1137/1.9780898718980
[2]  
[Anonymous], 1992, Random Field Models in Earth Sciences.
[3]  
Billingsley Patrick, 1999, Convergence of Probability Measures, V2nd, DOI DOI 10.1002/9780470316962
[4]   SOME EXAMPLES OF MIXING RANDOM-FIELDS [J].
BRADLEY, RC .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (02) :495-519
[5]   RATIO ESTIMATION AND FINITE POPULATIONS - SOME RESULTS DEDUCIBLE FROM THE ASSUMPTION OF AN UNDERLYING STOCHASTIC-PROCESS [J].
BREWER, KRW .
AUSTRALIAN JOURNAL OF STATISTICS, 1963, 5 (03) :93-105
[6]  
Chambers RL., 2012, INTRO MODEL BASED SU, DOI [10.1093/acprof:oso/9780198566625.001.0001, DOI 10.1093/ACPROF:OSO/9780198566625.001.0001]
[7]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR NONUNIFORM PHI-MIXING RANDOM-FIELDS [J].
CHEN, DC .
ANNALS OF PROBABILITY, 1991, 19 (02) :636-649
[8]  
Chung K.L., 2001, A Course in Probability Theory, V3rd
[9]   FUNCTIONAL CENTRAL LIMIT THEOREM FOR STATIONARY RANDOM FIELDS [J].
DEO, CM .
ANNALS OF PROBABILITY, 1975, 3 (04) :708-715
[10]  
DOUKHAN P, 1994, ANN I H POINCARE-PR, V30, P63