ACTIONS OF MONOIDAL CATEGORIES AND REPRESENTATIONS OF CARTAN TYPE LIE ALGEBRAS

被引:10
作者
Pei, Yufeng [1 ]
Sheng, Yunhe [2 ]
Tang, Rong [2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Guilin Rd 100, Shanghai 200234, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
crossed homomorphism; deformation; cohomology; Lie-Rinehart algebra; Leibniz pair; action of monoidal categories; Lie algebra of Cartan type; IRREDUCIBLE MODULES; VECTOR-FIELDS; RINEHART ALGEBRAS; HOMOTOPY ALGEBRAS; WITT ALGEBRAS; COHOMOLOGY; DEFORMATION;
D O I
10.1017/S147474802200007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using crossed homomorphisms, we show that the category of weak representations (respectively admissible representations) of Lie-Rinehart algebras (respectively Leibniz pairs) is a left module category over the monoidal category of representations of Lie algebras. In particular, the corresponding bifunctor of monoidal categories is established to give new weak representations (respectively admissible representations) of Lie-Rinehart algebras (respectively Leibniz pairs). This generalises and unifies various existing constructions of representations of many Lie algebras by using this new bifunctor. We construct some crossed homomorphisms in different situations and use our actions of monoidal categories to recover some known constructions of representations of various Lie algebras and to obtain new representations for generalised Witt algebras and their Lie subalgebras. The cohomology theory of crossed homomorphisms between Lie algebras is introduced and used to study linear deformations of crossed homomorphisms.
引用
收藏
页码:2367 / 2402
页数:36
相关论文
共 50 条
[1]   Simple Lie algebras of special type [J].
Bergen, J ;
Passman, DS .
JOURNAL OF ALGEBRA, 2000, 227 (01) :45-67
[2]   REPRESENTATIONS OF LIE ALGEBRAS OF VECTOR FIELDS ON AFFINE VARIETIES [J].
Billig, Yuly ;
Futorny, Vyacheslav ;
Nilsson, Jonathan .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 233 (01) :379-399
[3]   Lie algebras of vector fields on smooth ane varieties [J].
Billig, Yuly ;
Futorny, Vyacheslav .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (08) :3413-3429
[4]   Classification of category J modules for divergence zero vector fields on a torus [J].
Billig, Yuly ;
Talboom, John .
JOURNAL OF ALGEBRA, 2018, 500 :498-516
[5]   Classification of irreducible representations of Lie algebra of vector fields on a torus [J].
Billig, Yuly ;
Futorny, Vyacheslav .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 :199-216
[6]   Crossed modules for Lie-Rinehart algebras [J].
Casas, JM ;
Ladra, M ;
Pirashvili, T .
JOURNAL OF ALGEBRA, 2004, 274 (01) :192-201
[7]  
Dorfman I., 1993, NONLINEAR SCI THEORY
[8]   Simple modules over the Lie algebras of divergence zero vector fields on a torus [J].
Dubsky, Brendan Frisk ;
Guo, Xiangqian ;
Yao, Yufeng ;
Zhao, Kaiming .
FORUM MATHEMATICUM, 2019, 31 (03) :727-741
[9]  
Etingof P., 2015, MATH SURVEYS MONOGRA, V205
[10]   COHOMOLOGY AND DEFORMATION OF LEIBNIZ PAIRS [J].
FLATO, M ;
GERSTENHABER, M ;
VORONOV, AA .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (01) :77-90