On generalized (α,β)-derivations and Lie ideals of prime rings

被引:0
|
作者
Sandhu, Gurninder S. [1 ]
Ali, Shakir [2 ]
Boua, Abdelkarim [3 ]
Kumar, Deepak [4 ]
机构
[1] Patel Mem Natl Coll, Dept Math, Rajpura, India
[2] Aligarh Muslim Univ, Fac Sci, Dept Math, Aligarh, Uttar Pradesh, India
[3] Sidi Mohammed Ben Abdellah Univ, Polydisciplinary Fac, LSI, Taza, Morocco
[4] Punjabi Univ, Dept Math, Patiala, Punjab, India
关键词
Prime ring; Generalized derivation; Generalized; (alpha; beta)-derivation; Square-closed Lie ideal; DERIVATIONS; COMMUTATIVITY;
D O I
10.1007/s12215-021-00685-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring and alpha, beta be the automorphisms of R. The main aim of this article is to investigates several algebraic identities involving generalized (alpha, beta)-derivations acting on Lie ideals of prime rings. More precisely, we study the following identities: (i) F([x, y]) = alpha(x)circle F(y), (ii) F(x circle y) = [alpha(x), F(y)], (iii) F(xy) +/- yx. Z(R), (iv) F(xy) is an element of Z(R), (v) F(x)alpha (y) - beta(x)G(y) is an element of Z(R), (vi) F(x)y = xF(y), (vii) a(F(x)F(y) +/- alpha(xy)) = 0, (viii) a(F(x)F(y) +/- alpha(yx)) = 0 for all x, y. L (the nonzero square-closed Lie ideal of R), where 0. a. R is a fixed element. Moreover, some examples are given that exhibit the cruciality of the hypotheses taken.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 50 条
  • [11] Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
    De Filippis, V.
    Rania, F.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 748 - 758
  • [12] Commutators and generalized derivations acting on Lie ideals in prime rings
    Dhara B.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1509 - 1526
  • [13] Left annihilator of generalized derivations on Lie ideals in prime rings
    Shujat F.
    Khan S.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (1): : 77 - 81
  • [14] On an identity involving generalized derivations and Lie ideals of prime rings
    Sandhu, Gurninder Singh
    AIMS MATHEMATICS, 2020, 5 (04): : 3472 - 3479
  • [15] Commuting and centralizing generalized derivations on lie ideals in prime rings
    V. De Filippis
    F. Rania
    Mathematical Notes, 2010, 88 : 748 - 758
  • [16] Generalized derivations with Engel condition on Lie Ideals of prime rings
    Siddeeque, Mohammad Aslam
    Abdullah, Ali Ahmed
    Khan, Nazim
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 137 - 149
  • [17] Generalized skew derivations on Lie ideals in prime rings
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 219 - 225
  • [18] TWO GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Pandey, Ashutosh
    Prajapati, Balchand
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 48 - 61
  • [19] On Lie ideals and Jordan generalized derivations of prime rings
    Ashraf, M
    Nadeem-Ur-Rehman
    Ali, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (02): : 291 - 294
  • [20] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225