Regularized Meta-Training with Embedding Mixup for Improved Few-Shot Learning

被引:0
作者
Walsh, Reece [1 ]
Shehata, Mohamed [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT II | 2023年 / 14362卷
关键词
few-shot learning; image classification; regularization; out-of-domain;
D O I
10.1007/978-3-031-47966-3_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Few-shot learning has enabled techniques to grasp new, unseen tasks from a small set of labelled samples using previously taught knowledge. Although subfields in few-shot learning, such as metric learning, have demonstrated relative success, generalization towards unseen tasks continues to prove difficult, especially in an out-of-domain setting. To address this issue, we propose Embedding Mixup for Meta-Training (EMMeT), a novel regularization technique that creates new tasks through embedding shuffling and averaging for training metric-based backbones. In an experimental setting, our findings across indomain and out-of-domain datasets indicate that application of EMMeT promotes generalization and increases few-shot accuracy across a range of backbone models.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [21] Meta-BN Net for few-shot learning
    Wei Gao
    Mingwen Shao
    Jun Shu
    Xinkai Zhuang
    Frontiers of Computer Science, 2023, 17
  • [22] Meta-BN Net for few-shot learning
    Gao, Wei
    Shao, Mingwen
    Shu, Jun
    Zhuang, Xinkai
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (01)
  • [23] GIFSL - grafting based improved few-shot learning
    Mazumder, Pratik
    Singh, Pravendra
    Namboodiri, Vinay P.
    IMAGE AND VISION COMPUTING, 2020, 104
  • [24] Few-Shot Domain Adaptation via Mixup Optimal Transport
    Xu, Bingrong
    Zeng, Zhigang
    Lian, Cheng
    Ding, Zhengming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2518 - 2528
  • [25] Few-shot and meta-learning methods for image understanding: a survey
    He, Kai
    Pu, Nan
    Lao, Mingrui
    Lew, Michael S. S.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [26] Detach and unite: A simple meta-transfer for few-shot learning
    Zheng, Yaoyue
    Zhang, Xuetao
    Tian, Zhiqiang
    Zeng, Wei
    Du, Shaoyi
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [27] A concise review of recent few-shot meta-learning methods
    Li, Xiaoxu
    Sun, Zhuo
    Xue, Jing-Hao
    Ma, Zhanyu
    NEUROCOMPUTING, 2021, 456 : 463 - 468
  • [28] Few-shot and meta-learning methods for image understanding: a survey
    Kai He
    Nan Pu
    Mingrui Lao
    Michael S. Lew
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [29] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [30] Explore pretraining for few-shot learning
    Yan Li
    Jinjie Huang
    Multimedia Tools and Applications, 2024, 83 : 4691 - 4702