Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries

被引:47
|
作者
Xu, Ran [1 ]
Sun, Ning [1 ]
Zhou, Huanyu [1 ]
Chang, Xiaqing [1 ]
Soomro, Razium A. [1 ]
Xu, Bin [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
来源
BATTERY ENERGY | 2023年 / 2卷 / 02期
基金
中国国家自然科学基金;
关键词
anodes; carbons; heterostructures; sodium-ion batteries; FORMALDEHYDE; ADSORPTION; ELECTRODES; INSERTION; LITHIUM;
D O I
10.1002/bte2.20220054
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbons are widely studied as anode materials for sodium-ion batteries (SIBs) due to their high Na-storage capacity, long cycle life, and low cost. However, the low initial coulombic efficiency (ICE) and poor cycle performance remain bottleneck concerns that necessitate a comprehensive material engineering solution. Herein, we propose a facile strategy to synthesize amorphous carbons with pseudo-graphitic dominated crystalline, expanded interlayer spacing, and reduced surface defects via carbonization of the cross-linking network of phenolic resin and sucrose. An elaborate structural and electrochemical characteristics analysis has been investigated against different sucrose contents and carbonization temperatures. The representative PF-S-55-1200 with the optimum cross-linking degree as well as carbonization temperature realizes a high reversible Na-storage capacity of 323.0mAhg(-1) with an ICE as high as 86.4%, much superior to the pristine phenolic resin pyrolytic carbon with a capacity of 267.1mAhg(-1) and an ICE of 46.3%. The hybrid hard carbons also exhibit robust structural stability with a prolonged cycle lifespan evidenced by a retained capacity of 238.3mAhg(-1) at a current density of 200mAg(-1) over 1500 cycles. The proposed route promises low-cost and high-performance hybrid hard carbons with optimized structural configuration for advanced SIBs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Close pore engineering for biomass-derived hard carbon toward high-performance sodium-ion batteries
    Ren, Chaojie
    He, Jie
    Xu, Hanyu
    Wang, Ji
    Li, Ke
    Hu, Kuncai
    Zhao, Liang
    Wang, Haibo
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2025, 523
  • [42] Manipulating micropore structure of hard carbon as high-performance anode for Sodium-Ion Batteries
    Pan, Yihao
    Ji, Bingyang
    Wang, Lexin
    Sun, Yiran
    Li, Longchen
    Wu, Xiaozhong
    Zhou, Pengfei
    ELECTROCHIMICA ACTA, 2024, 506
  • [43] A Bifuctional Presodiation Reagent for Hard Carbon Anodes Enhancing Performance of Sodium-Ion Batteries
    Gao, Xiaoyu
    Sun, Yukun
    He, Bowen
    Nuli, Yanna
    Wang, Jiulin
    Yang, Jun
    ACS ENERGY LETTERS, 2024, 9 (03) : 1141 - 1147
  • [44] Conversion of waste denim fabrics into high-performance carbon fiber anodes for sodium-ion batteries
    Wang, Yichi
    Luo, Hao
    Zhong, Xin
    Zhou, Yinyin
    Jin, Aiping
    Yu, Linghui
    Li, Ming
    Xiong, Jun
    Peng, Junjun
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (43) : 20351 - 20363
  • [45] Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries
    Zhang, Yanjia
    Li, Xue
    Dong, Peng
    Wu, Gang
    Xiao, Jie
    Zeng, Xiaoyuan
    Zhang, Yingjie
    Sun, Xueliang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42796 - 42803
  • [46] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72
  • [47] BIOMASS-DERIVED CARBON ANODES FOR SODIUM-ION BATTERIES
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-jie
    Zhang, Wen-li
    CARBON, 2023, 206 : 434 - 434
  • [48] Nitrogen-Doped Hard Carbon on Nickel Foam as Free-Standing Anodes for High-Performance Sodium-Ion Batteries
    Li, Ruizi
    Huang, Jianfeng
    Li, Jiayin
    Cao, Liyun
    Luo, Yijia
    He, Yuanyuan
    Lu, Guoxing
    Yu, Aimin
    Chen, Shaoyi
    CHEMELECTROCHEM, 2020, 7 (03): : 604 - 613
  • [49] Biomass derived erythrocyte-like hard carbon as anodes for high performing full sodium-ion batteries
    Wang, Hanchi
    Li, Chunlin
    An, Jian
    Wang, Guoyong
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 286
  • [50] Biomass-Derived Hard Carbon Materials for High-Performance Sodium-Ion Battery
    Chen, Yixing
    Cui, Jiaming
    Wang, Sheng
    Xu, Wentao
    Guo, Ruoqi
    COATINGS, 2025, 15 (02):