AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance

被引:3
作者
Scannell, Cian M. [1 ,2 ]
Alskaf, Ebraham [1 ]
Sharrack, Noor [3 ]
Razavi, Reza [1 ]
Ourselin, Sebastien [1 ]
Young, Alistair A. [1 ]
Plein, Sven [1 ,3 ]
Chiribiri, Amedeo [1 ]
机构
[1] Kings Coll London, St Thomas Hosp, Sch Biomed Engn & Imaging Sci, 4th Floor Lambeth Wing, London SE1 7EH, England
[2] Eindhoven Univ Technol, Dept Biomed Engn, Groene Loper 5, NL-5612 Eindhoven, Netherlands
[3] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Dept Biomed Imaging Sci, Clarendon Way, Leeds LS2 9JT, England
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2023年 / 4卷 / 01期
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Artificial intelligence; Arterial input function; Quantitative myocardial perfusion; Cardiac magnetic resonance; EMISSION COMPUTED-TOMOGRAPHY; MYOCARDIAL-PERFUSION; CE-MARC; DISEASE; HEART; QUANTIFICATION; COUNCIL; RESERVE;
D O I
10.1093/ehjdh/ztac074
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsOne of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.Methods and resultsA 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), P = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.ConclusionQuantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF. Graphical Abstract
引用
收藏
页码:12 / 21
页数:10
相关论文
共 47 条
[21]  
Kingma D.P., 2015, 3 ICLR 2015
[22]   The Prognostic Significance of Quantitative Myocardial Perfusion An Artificial Intelligence-Based Approach Using Perfusion Mapping [J].
Knott, Kristopher D. ;
Seraphim, Andreas ;
Augusto, Joao B. ;
Xue, Hui ;
Chacko, Liza ;
Aung, Nay ;
Petersen, Steffen E. ;
Cooper, Jackie A. ;
Manisty, Charlotte ;
Bhuva, Anish N. ;
Kotecha, Tushar ;
Bourantas, Christos V. ;
Davies, Rhodri H. ;
Brown, Louise A. E. ;
Plein, Sven ;
Fontana, Marianna ;
Kellman, Peter ;
Moon, James C. .
CIRCULATION, 2020, 141 (16) :1282-1291
[23]   Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction Validation Against Invasive Coronary Physiology [J].
Kotecha, Tushar ;
Martinez-Naharro, Ana ;
Boldrini, Michele ;
Knight, Daniel ;
Hawkins, Philip ;
Kalra, Sundeep ;
Patel, Deven ;
Coghlan, Gerry ;
Moon, James ;
Plein, Sven ;
Lockie, Tim ;
Rakhit, Roby ;
Patel, Niket ;
Xue, Hui ;
Kellman, Peter ;
Fontana, Marianna .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (10) :1958-1969
[24]   High-Resolution Magnetic Resonance Myocardial Perfusion Imaging at 3.0-Tesla to Detect Hemodynamically Significant Coronary Stenoses as Determined by Fractional Flow Reserve [J].
Lockie, Timothy ;
Ishida, Masaki ;
Perera, Divaka ;
Chiribiri, Amedeo ;
De Silva, Kalpa ;
Kozerke, Sebastian ;
Marber, Mike ;
Nagel, Eike ;
Rezavi, Reza ;
Redwood, Simon ;
Plein, Sven .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 57 (01) :70-75
[25]   Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stress myocardial perfusion quantification [J].
Milidonis, Xenios ;
Franks, Russell ;
Schneider, Torben ;
Sanchez-Gonzalez, Javier ;
Sammut, Eva C. ;
Plein, Sven ;
Chiribiri, Amedeo .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2021, 23 (01)
[26]   Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC [J].
Murthy, Venkatesh L. ;
Bateman, Timothy M. ;
Beanlands, Rob S. ;
Berman, Daniel S. ;
Borges-Neto, Salvador ;
Chareonthaitawee, Panithaya ;
Cerqueira, Manuel D. ;
deKemp, Robert A. ;
DePuey, E. Gordon ;
Dilsizian, Vasken ;
Dorbala, Sharmila ;
Ficaro, Edward P. ;
Garcia, Ernest V. ;
Gewirtz, Henry ;
Heller, Gary V. ;
Lewin, Howard C. ;
Malhotra, Saurabh ;
Mann, April ;
Ruddy, Terrence D. ;
Schindler, Thomas H. ;
Schwartz, Ronald G. ;
Slomka, Piotr J. ;
Soman, Prem ;
Di Carli, Marcelo F. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (02) :273-293
[27]   Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease [J].
Nagel, Eike ;
Greenwood, John P. ;
McCann, Gerry P. ;
Bettencourt, Nuno ;
Shah, Ajay M. ;
Hussain, Shazia T. ;
Perera, Divaka ;
Plein, Sven ;
Bucciarelli-Ducci, Chiara ;
Paul, Matthias ;
Westwood, Mark A. ;
Marber, Michael ;
Richter, Wolf-Stefan ;
Puntmann, Valentina O. ;
Schwenke, Carsten ;
Schulz-Menger, Jeanette ;
Das, Rajiv ;
Wong, Joyce ;
Hausenloy, Derek J. ;
Steen, Henning ;
Berry, Colin .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (25) :2418-2428
[28]   Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion cardiovascular magnetic resonance with iterative reconstruction at 1.5T [J].
Nazir, Muhummad Sohaib ;
Neji, Radhouene ;
Speier, Peter ;
Reid, Fiona ;
Stab, Daniel ;
Schmidt, Michaela ;
Forman, Christoph ;
Razavi, Reza ;
Plein, Sven ;
Ismail, Tevfik F. ;
Chiribiri, Amedeo ;
Roujol, Sebastien .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[29]   Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging [J].
Panting, JR ;
Gatehouse, PD ;
Yang, GZ ;
Grothues, F ;
Firmin, DN ;
Collins, P ;
Pennell, DJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (25) :1948-1953
[30]   High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction [J].
Rahman, Haseeb ;
Scannell, Cian M. ;
Demir, Ozan M. ;
Ryan, Matthew ;
McConkey, Hannah ;
Ellis, Howard ;
Masci, Pier Giorgio ;
Perera, Divaka ;
Chiribiri, Amedeo .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (05) :978-986