Revani diffusion model in Cu(In,Ga)Se2

被引:5
作者
Colombara, Diego [1 ]
Stanbery, Billy J. [2 ]
Sozzi, Giovanna [3 ]
机构
[1] Univ Genoa, via Dodecaneso 31, I-16146 Genoa, Italy
[2] Colorado Sch Mines, 1301 19th St,Hill Hall, Golden, CO 80401 USA
[3] Univ Parma, Parco Area Sci, 181-A, I-43124 Parma, Italy
关键词
POTENTIAL-INDUCED DEGRADATION; SOLAR-CELLS; THIN-FILMS; HIGH-EFFICIENCY; NA; TRANSPORT; SODIUM; IMPACT; GROWTH; LAYERS;
D O I
10.1039/d3ta03690a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercial attractiveness of Cu(In,Ga) (S,Se)(2) (CIGS) photovoltaics is still curtailed by the R&D gap that separates it from silicon. Overcoming the gap requires the pursuit of strategic approaches, leaving plenty of room for R&D at both industrial and lab scale. Yet, its technological progress hinges on our understanding of the diffusion phenomena that occur during and after the absorber growth, particularly in combination with alkali metal doping. This contribution introduces a simplified model of atomic diffusion in CIGS based on insights drawn from recent and older (but crucial) literature. The concept of anisotropy-induced fluctuations emerges. We hypothesize that grain-dependent inhomogeneities arise in CIGS devices because of crystallographic dependent alkali metal diffusivities. Numerical simulations reveal that inhomogeneous doping density and CdS buffer layer thickness may impair the device performance by up to more than 1% absolute efficiency.
引用
收藏
页码:26426 / 26434
页数:9
相关论文
共 76 条
[1]   Inhomogeneities in Cu(In,Ga)Se2 Thin Films for Solar Cells: Band-Gap Versus Potential Fluctuations [J].
Abou-Ras, Daniel ;
Schaefer, Norbert ;
Hages, Charles J. ;
Levcenko, Sergej ;
Marquez, Jose ;
Unold, Thomas .
SOLAR RRL, 2018, 2 (01)
[2]   Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells - a review [J].
Abou-Ras, Daniel ;
Schmidt, Sebastian S. ;
Schaefer, Norbert ;
Kavalakkatt, Jaison ;
Rissom, Thorsten ;
Unold, Thomas ;
Mainz, Roland ;
Weber, Alfons ;
Kirchartz, Thomas ;
Sanli, Ekin Simsek ;
van Aken, Peter A. ;
Ramasse, Quentin M. ;
Kleebe, Hans-Joachim ;
Azulay, Doron ;
Balberg, Isaac ;
Millo, Oded ;
Cojocaru-Miredin, Oana ;
Barragan-Yani, Daniel ;
Albe, Karsten ;
Haarstrich, Jakob ;
Ronning, Carsten .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (05) :363-375
[3]   Vacuum-Healing of Grain Boundaries in Sodium-Doped CuInSe2 Solar Cell Absorbers [J].
Babbe, Finn ;
Nicoara, Nicoleta ;
Guthrey, Harvey ;
Valle, Nathalie ;
Sanchez, Omar Ramirez ;
Aureau, Damien ;
Elanzeery, Hossam ;
Sharma, Deepanjan ;
Virtuoso, Jose Luis ;
Audinot, Jean-Nicolas ;
Zelenina, Anastasiya ;
Gharabeiki, Sevan ;
Wirtz, Tom ;
Siebentritt, Susanne ;
Dale, Phillip J. ;
Sadewasser, Sascha ;
Colombara, Diego .
ADVANCED ENERGY MATERIALS, 2023, 13 (17)
[4]   Effect of sodium doping on graded Cu(In1-xGax)Se2 thin films prepared by chemical spray pyrolysis [J].
Babu, B. J. ;
Velumani, S. ;
Simonds, Brian J. ;
Ahrenkiel, Richard K. ;
Kassiba, A. ;
Asomoza, R. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 37 :37-45
[5]   Understanding the cell-to-module efficiency gap in Cu(In,Ga) (S,Se)2 photovoltaics scale-up [J].
Bermudez, Veronica ;
Perez-Rodriguez, Alejandro .
NATURE ENERGY, 2018, 3 (06) :466-475
[6]  
Bertram T., 2018, PRESENTED 7 WORLD C
[7]   Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells [J].
Carron, Romain ;
Avancini, Enrico ;
Feurer, Thomas ;
Bissig, Benjamin ;
Losio, Paolo A. ;
Figi, Renato ;
Schreiner, Claudia ;
Burki, Melanie ;
Bourgeois, Emilie ;
Remes, Zdenek ;
Nesladek, Milos ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) :396-410
[8]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[9]   Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography [J].
Cojocaru-Miredin, Oana ;
Schwarz, Torsten ;
Abou-Ras, Daniel .
SCRIPTA MATERIALIA, 2018, 148 :106-114
[10]  
Colombara D., 2022, 2022 IEEE 49 PHOTOVO, DOI [10.1109/PVSC48317.2022.9938586, DOI 10.1109/PVSC48317.2022.9938586]