Role of SiO2 in the Formation of Hydrate Phases in the Presence of CH4/CO2

被引:5
|
作者
Bozhko, Yu. Yu. [1 ,2 ]
Zhdanov, R. K. [1 ,2 ]
Gets, K. V. [1 ,2 ]
Subbotin, O. S. [1 ,2 ]
Belosludov, V. R. [1 ,2 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
gas hydrates; nanoparticles; molecular dynamics; computer modeling; greenhouse gases; 134A GAS HYDRATE; METHANE HYDRATE; MOLECULAR-DYNAMICS; NUCLEATION; SIMULATIONS; DISSOCIATION; STABILITY; WATER; CONDENSATION; SURFACTANTS;
D O I
10.1134/S0036023622602392
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The effect of silicon dioxide nanoparticles on the formation of hydrate phases in the presence of CH4/CO2 has been studied. The theoretical experiment has been carried out by molecular dynamics methods at initial pressures in the system of 2.4 and 1.2 MPa and a temperature of 271 K for methane and carbon dioxide systems. The results showed that in the presence of silicon dioxide nanoparticles, the induction time of the methane hydrate formation decreased by 79%, and the amount of methane trapped in the hydrate cavity increased by 55.8% at a pressure of 2.4 MPa. In the presence of silicon dioxide nanoparticles, the induction time for the formation of carbon dioxide hydrate decreased by 62%, and the amount of carbon dioxide trapped in the hydrate cavity increased by 27.8% at a pressure of 1.2 MPa.
引用
收藏
页码:233 / 237
页数:5
相关论文
共 50 条
  • [41] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [42] ATMOSPHERIC CH4, CO, AND CO2
    WOFSY, SC
    MCCONNELL, JC
    MCELROY, MB
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (24): : 4477 - +
  • [43] ATMOSPHERIC CH4, CO AND CO2
    WOFSY, SC
    MCELROY, MB
    MCCONNEL.JC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (07): : 722 - &
  • [44] Hydrate Equilibrium Measurements for CH4 and CO2/CH4 Mixture in the Presence of Single 2-Methyl-2-propanol and 1,1-Dichloro-1-fluoroethane
    Qi, Jing
    Wang, Yanhong
    Fan, Shuanshi
    Lang, Xuemei
    Li, Qi
    Li, Gang
    Chen, Jianbiao
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (08): : 3145 - 3149
  • [45] Formation of CO2 hydrate in the presence of montmorillonite
    Yokoyama, C
    Shibuya, K
    Kawase, Y
    Ebina, T
    SEKIYU GAKKAISHI-JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2000, 43 (03): : 182 - 188
  • [46] Measurement and Calculation of CO2 Frost Points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 Mixtures at Low Temperatures
    Xiong, Xiaojun
    Lin, Wensheng
    Jia, Rong
    Song, Yang
    Gu, Anzhong
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (11): : 3077 - 3086
  • [47] Ni/SiO2 -CeO2 catalyst for partial oxidation of CH4 and reforming of CO2 in a fluidized bed
    Jing, Qiangshan
    Luo, Dingfa
    Liu, Peng
    Zheng, Xiaoming
    Shiyou Huagong/Petrochemical Technology, 2007, 36 (02): : 122 - 126
  • [48] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [49] Impact of water film thickness on kinetic rate of mixed hydrate formation during injection of CO2 into CH4 hydrate
    Baig, Khuram
    Kvamme, Bjorn
    Kuznetsova, Tatiana
    Bauman, Jordan
    AICHE JOURNAL, 2015, 61 (11) : 3944 - 3957
  • [50] Investigation of CO2 Capture from a CO2 + CH4 Gas Mixture by Gas Hydrate Formation in the Fixed Bed of a Molecular Sieve
    Zhong, Dong-Liang
    Li, Zheng
    Lu, Yi-Yu
    Wang, Jia-Le
    Yan, Jin
    Qing, Sheng-Lan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (29) : 7973 - 7980