SCALO: An Accelerator-Rich Distributed System for Scalable Brain-Computer Interfacing

被引:5
作者
Sriram, Karthik [1 ,2 ]
Pothukuchi, Raghavendra Pradyumna [1 ]
Gerasimiuk, Michal [1 ]
Ugur, Muhammed [1 ]
Ye, Oliver [1 ]
Manohar, Rajit [1 ]
Khandelwal, Anurag [1 ]
Bhattacharjee, Abhishek [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] SCALO, Wroclaw, Poland
来源
PROCEEDINGS OF THE 2023 THE 50TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2023 | 2023年
关键词
Brain-Computer Interfaces; BCI; HardwareAccelerators; Low Power; ACTION-POTENTIALS; SIGNAL; COMMUNICATION; OPTIMIZATION; STIMULATION; RECORDINGS; SEIZURES; PROGRESS; EPILEPSY; NEURONS;
D O I
10.1145/3579371.3589107
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
SCALO is the first distributed brain-computer interface (BCI) consisting of multiple wireless-networked implants placed on different brain regions. SCALO unlocks new treatment options for debilitating neurological disorders and new research into brain-wide network behavior. Achieving the fast and low-power communication necessary for real-time processing has historically restricted BCIs to single brain sites. SCALO also adheres to tight power constraints, but enables fast distributed processing. Central to SCALO's efficiency is its realization as a full stack distributed system of brain implants with accelerator-rich compute. SCALO balances modular system layering with aggressive cross-layer hardware-software co-design to integrate compute, networking, and storage. The result is a lesson in designing energy-efficient networked distributed systems with hardware accelerators from the ground up.
引用
收藏
页码:1006 / 1025
页数:20
相关论文
共 172 条
[1]   Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection [J].
Abdelhadi, Ameer M. S. ;
Sha, Eugene ;
Bannon, Ciaran ;
Steenland, Hendrik ;
Moshovos, Andreas .
PROCEEDINGS OF 54TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2021, 2021, :522-534
[2]  
Agha NS, 2013, I IEEE EMBS C NEUR E, P989, DOI 10.1109/NER.2013.6696102
[3]  
Ahmadi N, 2019, I IEEE EMBS C NEUR E, P719, DOI [10.1109/NER.2019.8716998, 10.1109/ner.2019.8716998]
[4]   Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration [J].
Ajiboye, A. Bolu ;
Willett, Francis R. ;
Young, Daniel R. ;
Memberg, William D. ;
Murphy, Brian A. ;
Miller, Jonathan P. ;
Walter, Benjamin L. ;
Sweet, Jennifer A. ;
Hoyen, Harry A. ;
Keith, Michael W. ;
Peckham, P. Hunter ;
Simeral, John D. ;
Donoghue, John P. ;
Hochberg, Leigh R. ;
Kirsch, Robert F. .
LANCET, 2017, 389 (10081) :1821-1830
[5]  
Alliance Biomedica, 2019, Spencer Probe Depth Electrodes
[6]   Exploring Cognition with Brain-Machine Interfaces [J].
Andersen, Richard A. ;
Aflalo, Tyson ;
Bashford, Luke ;
Bjanes, David ;
Kellis, Spencer .
ANNUAL REVIEW OF PSYCHOLOGY, 2022, 73 :131-158
[7]  
[Anonymous], 2017, PMLR
[8]   256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes [J].
Aziz, Joseph N. Y. ;
Abdelhalim, Karim ;
Shulyzki, Ruslana ;
Genov, Roman ;
Bardakjian, Berj L. ;
Derchansky, Miron ;
Serletis, Demitre ;
Carlen, Peter L. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (03) :995-1005
[9]   System-Level Design of a Full-Duplex Wireless Transceiver for Brain-Machine Interfaces [J].
Bahrami, Hadi ;
Mirbozorgi, S. Abdollah ;
Nguyen, An T. ;
Gosselin, Benoit ;
Rusch, Leslie A. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (10) :3332-3341
[10]   Signal quality of simultaneously recorded invasive and non-invasive EEG [J].
Ball, Tonio ;
Kern, Markus ;
Mutschler, Isabella ;
Aertsen, Ad ;
Schulze-Bonhage, Andreas .
NEUROIMAGE, 2009, 46 (03) :708-716