Influence of material distribution and damping on the dynamic stability of Bernoulli-Euler beams

被引:2
|
作者
Garus, Sebastian [1 ]
Garus, Justyna [1 ]
Sochacki, Wojciech [1 ]
Nabialek, Marcin [2 ]
Petru, Jana [3 ]
Borek, Wojciech [4 ]
Sofer, Michal [5 ]
Kwiaton, Pawel [1 ]
机构
[1] Czestochowa Univ Sci & Technol, Fac Mech Engn & Comp Sci, PL-42200 Czestochowa, Poland
[2] Czestochowa Tech Univ, Fac Prod Engn & Mat Technol, Dept Phys, 19 Armii Krajowej, PL-42200 Czestochowa, Poland
[3] VSB Tech Univ Ostrava, Fac Mech Engn, Dept Machining Assembly & Engn Metrol, Ostrava 70833, Czech Republic
[4] Silesian Tech Univ, Dept Engn Mat & Biomat, Konarskiego 18A, PL-44100 Gliwice, Poland
[5] VSB Tech Univ Ostrava, Fac Mech Engn, Dept Appl Mech, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
关键词
mechanical vibrations; damping; beam; dynamic stability; Mathieu equation; VIBRATION; DIVERGENCE; FLUTTER; SYSTEM;
D O I
10.24425/bpasts.2023.145567
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study analyzed the influence of materials and different types of damping on the dynamic stability of the Bernoulli-Euler beam. Using the mode summation method and applying an orthogonal condition of eigenfunctions and describing the analyzed system with the Mathieu equation, the problem of dynamic stability was solved. By examining the influence of internal and external damping and damping in the beam supports, their influence on the regions of stability and instability of the solution to the Mathieu equation was determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] INFLUENCE OF MATERIAL DEFECTS ON THE DYNAMIC STABILITY OF THE BERNOULLI-EULER BEAM
    Sochacki, W.
    Garus, S.
    Garus, J.
    ARCHIVES OF METALLURGY AND MATERIALS, 2021, 66 (02) : 519 - 522
  • [2] Influence of Asymmetric Distribution of Defects on Dynamic Stability of Bernoulli-Euler Beam
    Sochacki, W.
    Garus, J.
    Garus, S.
    ACTA PHYSICA POLONICA A, 2021, 139 (05) : 557 - 561
  • [3] DYNAMIC STABILITY OF THE PERIODIC AND APERIODIC STRUCTURES OF THE BERNOULLI-EULER BEAMS
    Garus, J.
    Petru, J.
    Sochacki, W.
    Garus, S.
    ARCHIVES OF METALLURGY AND MATERIALS, 2024, 69 (01) : 275 - 279
  • [4] EXACT BERNOULLI-EULER DYNAMIC STIFFNESS MATRIX FOR A RANGE OF TAPERED BEAMS
    BANERJEE, JR
    WILLIAMS, FW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (12) : 2289 - 2302
  • [5] HIGH EIGENFREQUENCIES OF NONUNIFORM BERNOULLI-EULER BEAMS
    KATHNELSON, AN
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1992, 34 (10) : 805 - 808
  • [6] Strain proportional damping in Bernoulli-Euler beam theory
    Lisitano, Domenico
    Slavic, Janko
    Bonisoli, Elvio
    Boltezar, Miha
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145
  • [7] Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads
    Giunta, Filippo
    Muscolino, Giuseppe
    Sofi, Alba
    Elishakoff, Isaac
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2591 - 2596
  • [8] CONSERVATION-LAWS FOR NONHOMOGENEOUS BERNOULLI-EULER BEAMS
    CHIEN, N
    HONEIN, T
    HERRMANN, G
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (23) : 3321 - 3335
  • [9] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    T. I. Zhdan
    Moscow University Mechanics Bulletin, 2019, 74 : 123 - 127
  • [10] Dissipative dynamics of geometrically nonlinear Bernoulli-Euler beams
    A. S. Desyatova
    M. V. Zhigalov
    V. A. Krys’ko
    O. A. Saltykova
    Mechanics of Solids, 2008, 43 : 948 - 956