Using a superstructure approach for techno-economic analysis of membrane processes

被引:3
|
作者
Ramezani, Rouzbeh [1 ]
Randon, Andrea [1 ]
Di Felice, Luca [1 ]
Gallucci, Fausto [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Sustainable Proc Engn, Rondom 70, NL-5612 AP Eindhoven, Netherlands
关键词
Membrane separation; CO2; capture; Biogas upgrading; Superstructure; Optimization; GAS SEPARATION; CARBON CAPTURE; CO2; CAPTURE; FLUE-GAS; OPTIMIZATION; STORAGE; DESIGN;
D O I
10.1016/j.cherd.2023.10.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An intelligent optimization of multistage gas permeation layouts is required to achieve high product gas purities and high product recoveries at the same time in gas separation technologies. In this work, a superstructure-based mathematical model for the optimization of CO2 removal in three applications including post-combustion CO2 capture, natural gas sweetening and biogas upgrading is designed. A typical polymeric membrane prepared within the BIOCOMEM project, with high CO2 permeance, CO2/N2 selectivity of 25, and CO2/CH4 selectivity of 7.9 is studied to assess the potential of this membrane at a real industrial scale. Using a superstructure-based model, operating conditions, driving force distribution along each membrane stage, the use of feed compression and/or permeate vacuum, the number of stages and recycle options are simultaneously optimized. The techno-economic analysis of all three applications is then carried out and the most promising membrane-based process configuration was chosen. The multi-stage membrane process is investigated in terms of capture cost, energy consumption, and membrane area. The results revealed that high purity and recovery at a minimum cost could be achieved by the three-stage process in post-combustion CO2 capture and natural gas while in biogas upgrading the two-stage configuration exhibited the best performance. It was found that a reduction in capture cost to around 42 euro/tCO2 is possible in postcombustion CO2 capture if membranes with a selectivity of 50 and the same permeation flow are developed. (c) 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creative
引用
收藏
页码:296 / 311
页数:16
相关论文
共 50 条
  • [1] Techno-economic analysis of membrane-based processes for flexible CO2 capturing from power plants
    Asadi, Javad
    Kazempoor, Pejman
    ENERGY CONVERSION AND MANAGEMENT, 2021, 246 (246)
  • [2] Techno-economic Analysis of Hybrid Processes for Biogas Upgrading
    Scholz, Marco
    Frank, Bernard
    Stockrneier, Felix
    Falss, Sebastian
    Wessling, Matthias
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (47) : 16929 - 16938
  • [3] Guidelines for Techno-Economic Analysis of Adsorption Processes
    Danaci, David
    Webley, Paul A.
    Petit, Camille
    FRONTIERS IN CHEMICAL ENGINEERING, 2021, 2
  • [4] Process-integrated optimization and techno-economic analysis of membrane system for biogas upgrading: Effect of membrane performance from an economic perspective
    Kim, Se-Jung
    Song, Yongjae
    Binns, Michael
    Yeo, Jeong-Gu
    Kim, Jin-Kuk
    JOURNAL OF MEMBRANE SCIENCE, 2025, 713
  • [5] Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane
    Deng, Liyuan
    Hagg, May-Britt
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (04) : 638 - 646
  • [6] Techno-economic feasibility study of membrane based propane/propylene separation process
    Lee, Ung
    Kim, Jeongnam
    Chae, Ii Seok
    Han, Chonghun
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 119 : 62 - 72
  • [7] Techno-economic Analysis of a Bioethanol to Hydrogen Centralized Plant
    Compagnoni, Matteo
    Mostafavi, Ehsan
    Tripodi, Antonio
    Mahinpey, Nader
    Rossetti, Ilenia
    ENERGY & FUELS, 2017, 31 (11) : 12988 - 12996
  • [8] Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas
    Peh, Shing Bo
    Farooq, Shamsuzzaman
    Zhao, Dan
    CHEMICAL ENGINEERING SCIENCE, 2023, 268
  • [9] A cryogen-based peak-shaving technology: systematic approach and techno-economic analysis
    Li, Yongliang
    Wang, Xiang
    Ding, Yulong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (06) : 547 - 557
  • [10] Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy
    Lee, Ung
    Jeon, Jeongwoo
    Han, Chonghun
    Lim, Youngsub
    ENERGY, 2017, 137 : 83 - 94