Freestanding and Consecutive Intermixed N-Doped Hard Carbon@Soft Carbon Fiber Architectures as Ultrastable Anodes for High-Performance Li-Ion Batteries

被引:14
|
作者
Wang, Peng-Fei [1 ,2 ]
Li, Ying [1 ]
Tian, Shu-Hui [1 ,2 ]
Wang, Jian-Cang [1 ,2 ]
Qiu, Feilong [4 ]
Zhu, Yan-Rong [2 ]
Yi, Ting-Feng [1 ,2 ]
He, Ping [3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao 066004, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat & Technol, Collaborat Innovat Ctr Adv Microstruct,Jiangsu Ke, Nanjing 210093, Peoples R China
[4] East China Normal Univ, Sch Integrated Circuits, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; NANOFIBERS;
D O I
10.1021/acs.energyfuels.3c02775
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Freestanding N-doped hard carbon fibers and consecutive intermixed N-doped hard carbon@soft carbon composite fibers were successfully prepared by a simple electrospinning technique that used polyacrylonitrile and coal tar pitch as precursors. The electrochemical properties of these N-doped carbon fibers as anode materials for Li-ion batteries are studied. The prepared freestanding N-doped carbon fiber can be directly used as the anode without adding any binder and collector. The addition of coal tar pitch as a soft carbon source can reduce environmental pollution, improve the utilization of secondary resources, and improve the electrical conductivity of carbon fibers. Especially, intermixed N-doped hard carbon@soft carbon fibers with diameters of 200-300 nm were synthesized by electrospinning, followed by carbonization at 800 degrees C (CCNF-800), which displayed the best electrochemical performance among all samples. The high reversible capacity and ultrastable cycling stability can be ascribed to the reduced charge-transfer resistance and improved Li+ diffusion coefficient of CCNF-800 caused by a modification of coal tar pitch-based soft carbon. Ex situ X-ray diffraction (XRD) patterns also confirm that CCNF-800 possesses high structural stability and reversibility during cycling. This work provides an effective approach for the design of high-performance carbon-based electrodes and offers a new pathway to reduce dependence on fossil fuels.
引用
收藏
页码:15170 / 15178
页数:9
相关论文
共 50 条
  • [31] Nano Silicon Composite with Gelatin/Melamine Derived N-doped Carbon as an Efficient Anode Material for Li-ion Batteries
    Nulu, Venugopal
    KOREAN JOURNAL OF METALS AND MATERIALS, 2021, 59 (11): : 802 - 812
  • [32] N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature
    Wang, Zhiguang
    Li, Yueming
    Lv, Xiao-Jun
    RSC ADVANCES, 2014, 4 (107): : 62673 - 62677
  • [33] Sb Nanoparticles Embedded in the N-Doped Carbon Fibers as Binder-Free Anode for Flexible Li-Ion Batteries
    Wang, Xin
    Jia, Nanjun
    Li, Jianwei
    Liu, Pengbo
    Zhao, Xinsheng
    Lin, Yuxiao
    Sun, Changqing
    Qin, Wei
    NANOMATERIALS, 2022, 12 (18)
  • [34] N-doped hollow porous carbon microspheres with high rate performance as anode for sodium-ion batteries
    Wang, Xin
    Zhu, Fuliang
    Xiao, Mingjun
    Liu, Shizhe
    Liu, Xingzhong
    Meng, Yanshuang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (10) : 7913 - 7922
  • [35] N-doped carbon-coated MoS2 nanosheets on hollow carbon microspheres for high-performance lithium-ion batteries
    Xu, Wei
    Wang, Tao
    Wu, Sanding
    Wang, Sheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 68 - 76
  • [36] Nitrogen-Doped Hard Carbon on Nickel Foam as Free-Standing Anodes for High-Performance Sodium-Ion Batteries
    Li, Ruizi
    Huang, Jianfeng
    Li, Jiayin
    Cao, Liyun
    Luo, Yijia
    He, Yuanyuan
    Lu, Guoxing
    Yu, Aimin
    Chen, Shaoyi
    CHEMELECTROCHEM, 2020, 7 (03): : 604 - 613
  • [37] Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries
    Lee, Jun Yeob
    Park, Gi Dae
    Choi, Jae Hun
    Kang, Yun Chan
    NANOSCALE, 2020, 12 (03) : 2142 - 2153
  • [38] Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries
    Ren, Yurong
    Wu, Ximin
    Li, Mingqi
    ELECTROCHIMICA ACTA, 2016, 206 : 328 - 336
  • [39] Zn2SnO4-carbon cloth freestanding flexible anodes for high-performance lithium-ion batteries
    Xia, Ji
    Tian, Ran
    Guo, Yiping
    Du, Qi
    Dong, Wen
    Guo, Runjiang
    Fu, Xiuwu
    Guan, Lin
    Liu, Hezhou
    MATERIALS & DESIGN, 2018, 156 : 272 - 277
  • [40] Co3S4 ultrathin nanosheets entangled on N-doped amorphous carbon coated carbon nanotubes with C-S bonding for high performance Li-ion batteries
    Wang, Guangming
    Yue, Hailong
    Jin, Rencheng
    Wang, Qingyao
    Gao, Shanmin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 858 (858)