Self-Adaptive Graph With Nonlocal Attention Network for Skeleton-Based Action Recognition

被引:9
作者
Pang, Chen [1 ,2 ]
Gao, Xingyu [3 ]
Chen, Zhenyu [4 ,5 ]
Lyu, Lei [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[2] Shandong Normal Univ, Shandong Prov Key Lab Novel Distributed Comp Soft, Jinan 250358, Peoples R China
[3] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[4] State Grid Corp China, Big Data Ctr, Beijing 100031, Peoples R China
[5] China Elect Power Res Inst, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; global attention; graph convolutional network (GCN); self-adaptive graph;
D O I
10.1109/TNNLS.2023.3298950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) have achieved encouraging progress in modeling human body skeletons as spatial-temporal graphs. However, existing methods still suffer from two inherent drawbacks. Firstly, these models process the input data based on the physical structure of the human body, which leads to some latent correlations among joints being ignored. Furthermore, the key temporal relationships between nonadjacent frames are overlooked, preventing to fully learn the changes of the body joints along the temporal dimension. To address these issues, we propose an innovative spatial-temporal model by introducing a self-adaptive GCN (SAGCN) with global attention network, collectively termed SAG-GAN. Specifically, the SAGCN module is proposed to construct two additional dynamic topological graphs to learn the common characteristics of all data and represent a unique pattern for each sample, respectively. Meanwhile, the global attention module (spatial attention (SA) and temporal attention (TA) modules) is designed to extract the global connections between different joints in a single frame and model temporal relationships between adjacent and nonadjacent frames in temporal sequences. In this manner, our network can capture richer features of actions for accurate action recognition and overcome the defect of the standard graph convolution. Extensive experiments on three benchmark datasets (NTU-60, NTU-120, and Kinetics) have demonstrated the superiority of our proposed method.
引用
收藏
页码:17057 / 17069
页数:13
相关论文
共 50 条
  • [1] SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition
    Wu, Zhize
    Sun, Pengpeng
    Chen, Xin
    Tang, Keke
    Xu, Tong
    Zou, Le
    Wang, Xiaofeng
    Tan, Ming
    Cheng, Fan
    Weise, Thomas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4391 - 4403
  • [2] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [3] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [4] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [5] Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
    Liu, Di
    Xu, Hui
    Wang, Jianzhong
    Lu, Yinghua
    Kong, Jun
    Qi, Miao
    SENSORS, 2021, 21 (20)
  • [6] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [7] Independent Dual Graph Attention Convolutional Network for Skeleton-Based Action Recognition
    Huo, Jinze
    Cai, Haibin
    Meng, Qinggang
    NEUROCOMPUTING, 2024, 583
  • [8] Graph transformer network with temporal kernel attention for skeleton-based action recognition
    Liu, Yanan
    Zhang, Hao
    Xu, Dan
    He, Kangjian
    KNOWLEDGE-BASED SYSTEMS, 2022, 240
  • [9] Hierarchical graph attention network with pseudo-metapath for skeleton-based action recognition
    Wang, Mingdao
    Li, XueMing
    Zhang, Xianlin
    Zhang, Yue
    NEUROCOMPUTING, 2022, 501 : 822 - 833
  • [10] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939