The moment exponential stability of infinite-dimensional linear stochastic switched systems

被引:1
|
作者
Zheng, Guojie [1 ]
Wang, Taige [2 ]
机构
[1] Ningbo Univ Finance & Econ, Coll Digital Technol & Engn, Ningbo 315175, Peoples R China
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
infinite-dimensional stochastic switched systems; stability analysis; multiple Lyapunov function; Ito<SIC> formula; MULTIPLE LYAPUNOV FUNCTIONS; STABILIZABILITY; STABILIZATION;
D O I
10.3934/math.20231257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the 2nd-moment exponential stability of a class of infinite-dimensional linear stochastic switched systems comprising two unstable subsystems. We first construct an algebraic sufficient condition on the existence of multiple Lyapunov functions. Then, two switching strategies are designed to stabilize infinite-dimensional linear stochastic switched systems in terms of the multiple Lyapunov function method. Moreover, the system possesses good robust stability of the switching time with our switching strategies.
引用
收藏
页码:24663 / 24680
页数:18
相关论文
共 50 条
  • [1] Power stability of discrete linear switched infinite-dimensional systems
    Sun Wei
    Zhao Yi
    Huang Yu
    PROCEEDINGS OF 2006 CHINESE CONTROL AND DECISION CONFERENCE, 2006, : 87 - 89
  • [2] Stabilization for Infinite-Dimensional Switched Linear Systems
    Zheng, Guojie
    Xiong, Jiandong
    Yu, Xin
    Xu, Chao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5456 - 5463
  • [3] Exponential Stability of Infinite Dimensional Linear Stochastic Systems with Time Delay
    Dai Xisheng
    Deng Feiqi
    Luo Wenguang
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1407 - 1412
  • [4] Controllability of Switched Infinite-dimensional Linear Dynamical Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 171 - 175
  • [5] Robust stability of linear infinite-dimensional systems
    Bobylev, N.A.
    Bulatov, A.V.
    Avtomatika i Telemekhanika, 1999, (05): : 32 - 44
  • [6] On the stability of infinite-dimensional linear inequality systems
    López, MA
    Mira, JA
    Torregrosa, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (9-10) : 1065 - 1077
  • [7] On Observability and Stability in Infinite-Dimensional Linear Systems
    Fuhrmann, P. A.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 12 (02) : 173 - 181
  • [8] Stability of conformable linear infinite-dimensional systems
    Sadek, Lakhlifa
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) : 1276 - 1284
  • [9] STABILITY OF LINEAR INFINITE-DIMENSIONAL SYSTEMS REVISITED
    PRZYLUSKI, KM
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 513 - 523
  • [10] Stability of conformable linear infinite-dimensional systems
    Lakhlifa Sadek
    International Journal of Dynamics and Control, 2023, 11 : 1276 - 1284