Passive frustrated nanomagnet reservoir computing

被引:3
作者
Edwards, Alexander J. [1 ]
Bhattacharya, Dhritiman [2 ]
Zhou, Peng [1 ]
McDonald, Nathan R. [3 ]
Al Misba, Walid [2 ]
Loomis, Lisa [3 ]
Garcia-Sanchez, Felipe [4 ]
Hassan, Naimul [1 ]
Hu, Xuan [1 ]
Chowdhury, Md. Fahim [2 ]
Thiem, Clare D. [3 ]
Atulasimha, Jayasimha [2 ]
Friedman, Joseph S. [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA USA
[3] Air Force Res Lab, Informat Directorate, Rome, NY USA
[4] Univ Salamanca, Salamanca, Spain
关键词
Compendex;
D O I
10.1038/s42005-023-01324-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reservoir computing (RC) has received recent interest because reservoir weights do not need to be trained, enabling extremely low-resource consumption implementations, which could have a transformative impact on edge computing and in-situ learning where resources are severely constrained. Ideally, a natural hardware reservoir should be passive, minimal, expressive, and feasible; to date, proposed hardware reservoirs have had difficulty meeting all of these criteria. We, therefore, propose a reservoir that meets all of these criteria by leveraging the passive interactions of dipole-coupled, frustrated nanomagnets. The frustration significantly increases the number of stable reservoir states, enriching reservoir dynamics, and as such these frustrated nanomagnets fulfill all of the criteria for a natural hardware reservoir. We likewise propose a complete frustrated nanomagnet reservoir computing (NMRC) system with low-power complementary metal-oxide semiconductor (CMOS) circuitry to interface with the reservoir, and initial experimental results demonstrate the reservoir's feasibility. The reservoir is verified with micromagnetic simulations on three separate tasks demonstrating expressivity. The proposed system is compared with a CMOS echo state network (ESN), demonstrating an overall resource decrease by a factor of over 10,000,000, demonstrating that because NMRC is naturally passive and minimal it has the potential to be extremely resource efficient.
引用
收藏
页数:9
相关论文
共 60 条
[1]   FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting [J].
Alomar, Miquel L. ;
Canals, Vincent ;
Perez-Mora, Nicolas ;
Martinez-Moll, Victor ;
Rossello, Josep L. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
[2]  
[Anonymous], 2002, A New Kind of Science
[3]   Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems [J].
Antonik, Piotr ;
Haelterman, Marc ;
Massar, Serge .
PHYSICAL REVIEW APPLIED, 2017, 7 (05)
[4]  
Bennett CH, 2017, IEEE INT SYMP NANO, P125, DOI 10.1109/NANOARCH.2017.8053708
[5]  
Bürger J, 2015, IEEE INT SYMP NANO, P33, DOI 10.1109/NANOARCH.2015.7180583
[6]  
Bürger J, 2013, PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), P1, DOI 10.1109/NanoArch.2013.6623028
[7]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[8]   CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors [J].
Chen, Wei-Hao ;
Dou, Chunmeng ;
Li, Kai-Xiang ;
Lin, Wei-Yu ;
Li, Pin-Yi ;
Huang, Jian-Hao ;
Wang, Jing-Hong ;
Wei, Wei-Chen ;
Xue, Cheng-Xin ;
Chiu, Yen-Cheng ;
King, Ya-Chin ;
Lin, Chorng-Jung ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Yang, J. Joshua ;
Ho, Mon-Shu ;
Chang, Meng-Fan .
NATURE ELECTRONICS, 2019, 2 (09) :420-428
[9]   Dynamically-Driven Emergence in a Nanomagnetic System [J].
Dawidek, Richard W. ;
Hayward, Thomas J. ;
Vidamour, Ian T. ;
Broomhall, Thomas J. ;
Venkat, Guru ;
Al Mamoori, Mohanad ;
Mullen, Aidan ;
Kyle, Stephan J. ;
Fry, Paul W. ;
Steinke, Nina-Juliane ;
Cooper, Joshaniel F. K. ;
Maccherozzi, Francesco ;
Dhesi, Sarnjeet S. ;
Aballe, Lucia ;
Foerster, Michael ;
Prat, Jordi ;
Vasilaki, Eleni ;
Ellis, Matthew O. A. ;
Allwood, Dan A. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (15)
[10]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8