Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma

被引:1
|
作者
Xiong, Yi [1 ,2 ,3 ]
Zhang, Yihao [1 ,2 ,3 ]
Liu, Na [1 ,2 ,4 ]
Li, Yueshuo [1 ,2 ,4 ]
Liu, Hongwei [1 ,2 ]
Yang, Qi [1 ,2 ]
Chen, Yu [3 ]
Xia, Zhizhi [5 ]
Chen, Xin [6 ]
Wanggou, Siyi [1 ,2 ]
Li, Xuejun [1 ,2 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410008, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Hunan Int Sci & Technol Cooperat Base Brain Tumor, Changsha 410008, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Sch Med, Changsha 410013, Peoples R China
[4] Cent South Univ, Xiangya Hosp, Postdoctoral Res Workstat, Changsha 410078, Hunan, Peoples R China
[5] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada
[6] Shanghai Jiao Tong Univ, Shanghai Songjiang Dist Cent Hosp, Songjiang Res Inst, Sch Med, Shanghai 201600, Peoples R China
基金
中国国家自然科学基金;
关键词
LUAD; LPRI; Prognostic model; Transcriptional regulation; TCGA; Single cell RNA sequencing; TME; Chemotherapy and immunotherapy; DIFFERENTIATION; CANCER; LANDSCAPE; MODELS;
D O I
10.1186/s12967-023-04331-z
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Transcriptional programs are often dysregulated in cancers. A comprehensive investigation of potential regulons is critical to the understanding of tumorigeneses. We first constructed the regulatory networks from single-cell RNA sequencing data in human lung adenocarcinoma (LUAD). We next introduce LPRI (Lung Cancer Prognostic Regulon Index), a precision oncology framework to identify new biomarkers associated with prognosis by leveraging the single cell regulon atlas and bulk RNA sequencing or microarray datasets. We confirmed that LPRI could be a robust biomarker to guide prognosis stratification across lung adenocarcinoma cohorts. Finally, a multi-omics data analysis to characterize molecular alterations associated with LPRI was performed from The Cancer Genome Atlas (TCGA) dataset. Our study provides a comprehensive chart of regulons in LUAD. Additionally, LPRI will be used to help prognostic prediction and developing personalized treatment for future studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity
    Bian, Xiaojie
    Wang, Wenfeng
    Abudurexiti, Mierxiati
    Zhang, Xingming
    Ma, Weiwei
    Shi, Guohai
    Du, Leilei
    Xu, Midie
    Wang, Xin
    Tan, Cong
    Sun, Hui
    He, Xiadi
    Zhang, Chenyue
    Zhu, Yao
    Zhang, Min
    Ye, Dingwei
    Wang, Jianhua
    ADVANCED SCIENCE, 2024, 11 (18)
  • [42] Spectral clustering of single-cell multi-omics data on multilayer graphs
    Zhang, Shuyi
    Leistico, Jacob R.
    Cho, Raymond J.
    Cheng, Jeffrey B.
    Song, Jun S.
    BIOINFORMATICS, 2022, 38 (14) : 3600 - 3608
  • [43] Attention-Fusion Model for Multi-omics (AMMO) Data Integration in Lung Adenocarcinoma
    Li, Wentao
    Muneer, Amgad
    Waqas, Muhammad
    Zhou, Xiaobo
    Wu, Jia
    COMPUTATIONAL MATHEMATICS MODELING IN CANCER ANALYSIS, CMMCA 2024, 2025, 15181 : 52 - 60
  • [44] Comprehensive multi-omics integration uncovers mitochondrial gene signatures for prognosis and personalized therapy in lung adenocarcinoma
    Zhang, Wenjia
    Zhao, Lei
    Zheng, Tiansheng
    Fan, Lihong
    Wang, Kai
    Li, Guoshu
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [45] Functional and Prognostic Roles of Butyrophilin Genes in Lung Adenocarcinoma: Multi-Omics Integration and Survival Analyses
    Qi X.
    Chen S.
    Zuo J.
    Yan D.
    Chen J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2021, 50 (06): : 828 - 836
  • [46] Decoding the human prenatal immune system with single-cell multi-omics
    Haniffa, Muzlifah
    Maartens, Aidan
    Winheim, Elena
    Jardine, Laura
    NATURE REVIEWS IMMUNOLOGY, 2024, : 285 - 297
  • [47] Scbean: a python']python library for single-cell multi-omics data analysis
    Zhang, Haohui
    Wang, Yuwei
    Lian, Bin
    Wang, Yiran
    Li, Xingyi
    Wang, Tao
    Shang, Xuequn
    Yang, Hui
    Aziz, Ahmad
    Hu, Jialu
    BIOINFORMATICS, 2024, 40 (02)
  • [48] Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS
    Trimbour, Remi
    Deutschmann, Ina Maria
    Cantini, Laura
    BIOINFORMATICS, 2024, 40 (05)
  • [49] Multi-omics at single-cell resolution: comparison of experimental and data fusion approaches
    Leonavicius, Karolis
    Nainys, Juozas
    Kuciauskas, Dalius
    Mazutis, Linas
    CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 159 - 166
  • [50] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Xiang Lin
    Tian Tian
    Zhi Wei
    Hakon Hakonarson
    Nature Communications, 13