Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma

被引:1
|
作者
Xiong, Yi [1 ,2 ,3 ]
Zhang, Yihao [1 ,2 ,3 ]
Liu, Na [1 ,2 ,4 ]
Li, Yueshuo [1 ,2 ,4 ]
Liu, Hongwei [1 ,2 ]
Yang, Qi [1 ,2 ]
Chen, Yu [3 ]
Xia, Zhizhi [5 ]
Chen, Xin [6 ]
Wanggou, Siyi [1 ,2 ]
Li, Xuejun [1 ,2 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410008, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Hunan Int Sci & Technol Cooperat Base Brain Tumor, Changsha 410008, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Sch Med, Changsha 410013, Peoples R China
[4] Cent South Univ, Xiangya Hosp, Postdoctoral Res Workstat, Changsha 410078, Hunan, Peoples R China
[5] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada
[6] Shanghai Jiao Tong Univ, Shanghai Songjiang Dist Cent Hosp, Songjiang Res Inst, Sch Med, Shanghai 201600, Peoples R China
基金
中国国家自然科学基金;
关键词
LUAD; LPRI; Prognostic model; Transcriptional regulation; TCGA; Single cell RNA sequencing; TME; Chemotherapy and immunotherapy; DIFFERENTIATION; CANCER; LANDSCAPE; MODELS;
D O I
10.1186/s12967-023-04331-z
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Transcriptional programs are often dysregulated in cancers. A comprehensive investigation of potential regulons is critical to the understanding of tumorigeneses. We first constructed the regulatory networks from single-cell RNA sequencing data in human lung adenocarcinoma (LUAD). We next introduce LPRI (Lung Cancer Prognostic Regulon Index), a precision oncology framework to identify new biomarkers associated with prognosis by leveraging the single cell regulon atlas and bulk RNA sequencing or microarray datasets. We confirmed that LPRI could be a robust biomarker to guide prognosis stratification across lung adenocarcinoma cohorts. Finally, a multi-omics data analysis to characterize molecular alterations associated with LPRI was performed from The Cancer Genome Atlas (TCGA) dataset. Our study provides a comprehensive chart of regulons in LUAD. Additionally, LPRI will be used to help prognostic prediction and developing personalized treatment for future studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma
    Yi Xiong
    Yihao Zhang
    Na Liu
    Yueshuo Li
    Hongwei Liu
    Qi Yang
    Yu Chen
    Zhizhi Xia
    Xin Chen
    Siyi Wanggou
    Xuejun Li
    Journal of Translational Medicine, 21
  • [2] Integration of multi-omics data for survival prediction of lung adenocarcinoma
    Guo, Dingjie
    Wang, Yixian
    Chen, Jing
    Liu, Xin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 250
  • [3] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [4] Single Cell Atlas: a single-cell multi-omics human cell encyclopedia
    Pan, Lu
    Parini, Paolo
    Tremmel, Roman
    Loscalzo, Joseph
    Lauschke, Volker
    Maron, Bradley
    Paci, Paola
    Ernberg, Ingemar
    Tan, Nguan Soon
    Liao, Zehuan
    Yin, Weiyao
    Rengarajan, Sundararaman
    Li, Xuexin
    GENOME BIOLOGY, 2024, 25 (01)
  • [5] A multi-omics atlas of the human retina at single-cell resolution
    Liang, Qingnan
    Cheng, Xuesen
    Wang, Jun
    Owen, Leah
    Shakoor, Akbar
    Lillvis, John L.
    Zhang, Charles
    Farkas, Michael
    Kim, Ivana K.
    Li, Yumei
    DeAngelis, Margaret
    Chen, Rui
    CELL GENOMICS, 2023, 3 (06):
  • [6] Benchmarking algorithms for single-cell multi-omics prediction and integration
    Hu, Yinlei
    Wan, Siyuan
    Luo, Yuanhanyu
    Li, Yuanzhe
    Wu, Tong
    Deng, Wentao
    Jiang, Chen
    Jiang, Shan
    Zhang, Yueping
    Liu, Nianping
    Yang, Zongcheng
    Chen, Falai
    Li, Bin
    Qu, Kun
    NATURE METHODS, 2024, 21 (11) : 2182 - +
  • [7] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    Nature Communications, 14
  • [9] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [10] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724