Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Experimental and statistical evaluation of biohythane fuelled thermal barrier coated engine using machine learning algorithms
    Deheri, Chinmay
    Acharya, Saroj Kumar
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2023, 31 (01) : 42 - 67
  • [42] Experimental and numerical assessment of thermal characteristics of PCM in a U-shaped heat exchanger using porous metal foam and NanoPowder
    Nematpourkeshteli, Abolfazl
    Mahmoudi, Amirhoushang
    Iasiello, Marcello
    Langella, Giuseppe
    Bianco, Nicola
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 274
  • [43] Numerical Study for the Thermal Energy Storage Using PCM in Concentric Cylinders
    Alshara A.K.
    International Journal of Applied and Computational Mathematics, 2018, 4 (3)
  • [44] Prediction of thermal conduction of energy piles using various machine learning models
    Imtiyaz, Peerzadi Arzeena
    Khalad, Abdul
    Muqtadir, Syed Abdul
    INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING, 2023, 17 (06) : 668 - 680
  • [45] Thermal analysis of PCM magnesium chloride hexahydrate using various machine learning and deep learning models
    Balakrishnan, Vignes Karthic Venkatraman
    Kumaresan, Kannan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [46] Formulation of highly stable PCM nano -emulsions with reduced supercooling for thermal energy storage using surfactant mixtures
    Liu, Liu
    Niu, Jianlei
    Wu, Jian-Yong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 223 (223)
  • [47] Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) - Numerical dynamic modelling and experimental study of a packed bed unit
    Tafone, Alessio
    Borri, Emiliano
    Cabeza, Luisa F.
    Romagnoli, Alessandro
    APPLIED ENERGY, 2021, 301
  • [48] Experimental study on packed-bed thermal energy storage using recycled ceramic as filler materials
    Al-Azawii, Mohammad M. S.
    Alhamdi, Sabah F. H.
    Braun, Sasha
    Hoffmann, Jean-Francois
    Calvet, Nicolas
    Anderson, Ryan
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [49] Quantitative Assessment of Volcanic Thermal Activity from Space Using an Isolation Forest Machine Learning Algorithm
    Corradino, Claudia
    Malaguti, Arianna Beatrice
    Ramsey, Micheal S.
    Del Negro, Ciro
    REMOTE SENSING, 2024, 16 (11)
  • [50] Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper
    Azaizia, Zaineb
    Kooli, Sami
    Hamdi, Ilhem
    Elkhal, Wissem
    Guizani, Amen Allah
    RENEWABLE ENERGY, 2020, 145 (145) : 1972 - 1984